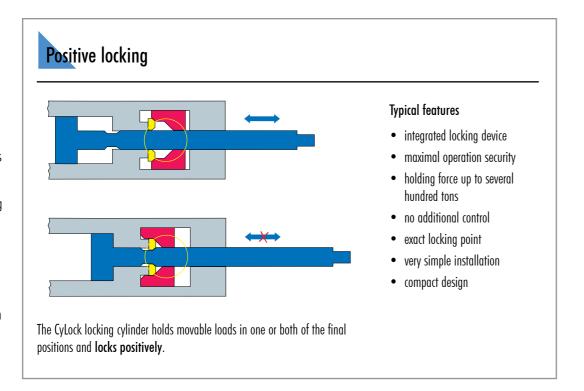


Locking, arresting, holding, braking, securing, pressing, positioning, clamping ...

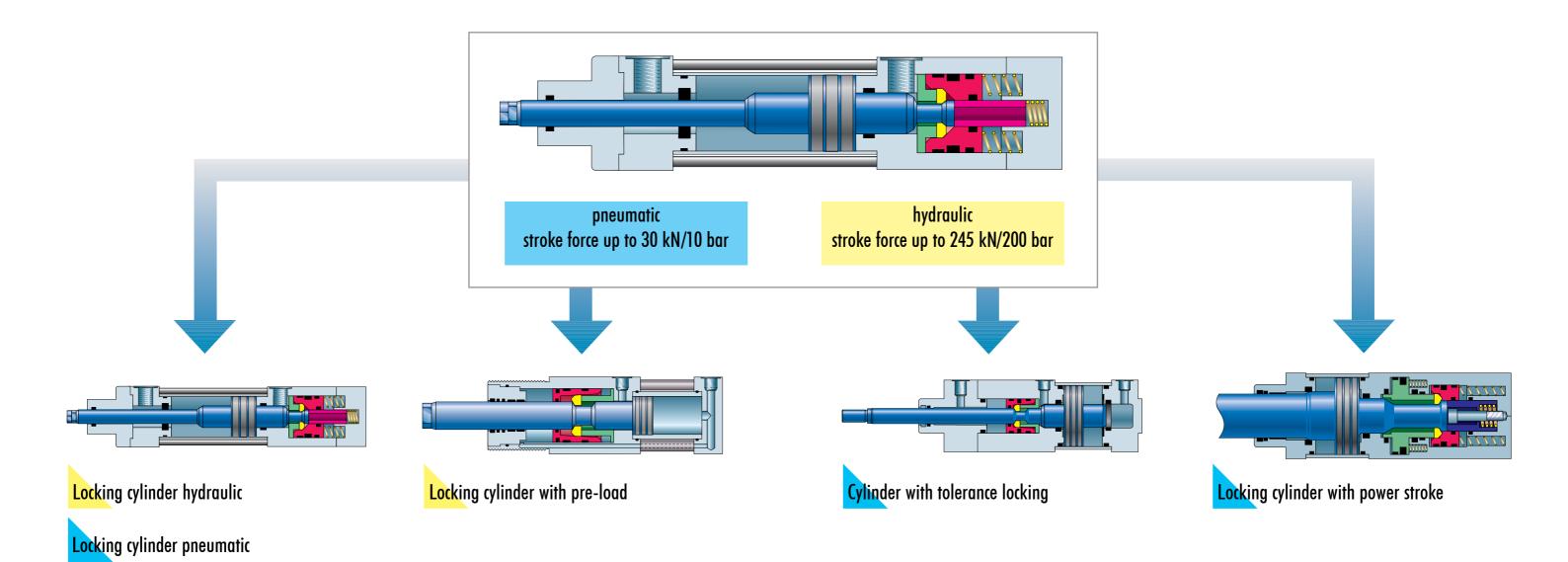

CyTec is specialise in the development of special cylinders which reduce the technical expenditure on the construc-

The cylinders are based on two basic ideas:Grundideen:

- 1. A cylinder that positively locks in its final position
- 2. A cylinder that offers friction locking at variable positions

The CyTec products are of multifunctional significance, that means:

- Effective in the field of lifting and material handling. Cylinders remain positively locked or friction locked even when power is disconnected.
- The high forces and the integrated safety function and simplify costly work intensive constructions.
- A reduction of components decrea ses the costs and increases the reliability.


	Typical features
	high holding forces
	• compact design
	 self-locking when energy supp ly is interrupted
	• locking in any intermediate
	position • short reaction times
	Short fouction tillios
The CyStop braking cylinder brakes movable loads in every desir with frictional connection.	ed position

-2-

Content			
CyLock, CyStop - the cylinder concept	that's different		2
CyLock, Product overview			4
• •	Function		6
	Planning tips		8
	Operating advice		9
	Locking types		10
	Indication of final str	oke position	11
	Stroke indication with	n Reed switches	12
	Wiring diagram of pr	oximity switches	13
CyLock, hydraulic locking cylinder	Exemplary application	ns	14
	Technical data:	Type HA - 00	16
		Type HA/HB - 01	17
		Type HA/HB -02	18
		Type HA/HB - 03	19
		Type HW - 00	20
		Type HW/HY - 01	21
		Type HW/HY - 02	22
		Type HW/HY - 03	23
	Fixtures for hydraulic	model lines	24
CyPull , core pulling cylinder with posit			28
CyLock , pneumatic locking cylinder	Practical applications		30
	Overview, pneumatic		31
	Technical data	Type PV - 00	32
		Type PV - 01	33
		Type PV - 02	34
		Type PV - 03	35
	Series PH and PT		36
	Technical data	Type PT - 01	37
	Fixtures for pneumati	c model lines	38
CyStop , pneumatic braking cylinder:	Function		42
	Operating advice		43
	Practical applications		44
	Overview		45
	Technical data	Type KP	42
	Fixtures		43

-3-

Application examples

- Safety cylinder in presses
- Counter bearing in punching machines
- Closing cylinder on gates
- Clamping devices for structural components
- Closing devices
- Shutter of rollers in the paper industry
- Reshaping industry (beading, riveting, wobbling)

Application examples

- Locking core pull cylinder on die and mould tools
- Tool clamping system on die casting machines

Application examples

- Containers with elastic and non-elastic seals
- Clamping devices for wide toleranced components

Application examples

-5-

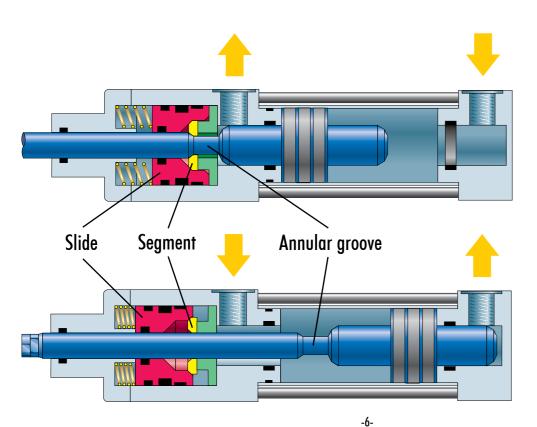
- Automatic adjustment to various film thicknesses (packaging industry)
- Automatic power stroke for punching, embossing and welding

<u>l-</u>

Function

Hydraulic and pneumatic cylinder with an internal positive-locking device

The CyLock Locking cylinder makes it possible to achieve technically elegant and simplified constructions in a cost effective way. In former times an additional cylinder with valve and respective sensors were required to fulfil a determined performance profile. Today only one CyLock cylinder with a simple control device is needed. That means for the production process:


That means for the production process:

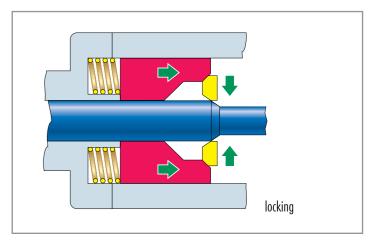
- Reduced construction-, cost and fabrication effort
- Reduction of constructive elements and of susceptibility to interference
- Longer production cycles
- High security

The positive-locking automatically becomes effective with no additional control when the cylinder reaches a final position. One precondition here is that the pressure connection on the locking side is depressurised, though this is normally the case in a standard circuit

Since the holding force in the locked position is many times that of the cylinder's hoisting power, high counterforces can also be absorbed safely.

The guaranteed failsafe system and rigidity under load with multiple counterforces are the most important features of the cylinder.

Locking:


By applying pressure to the piston side the piston rod reaches its final position and becomes positively locked by the segments which are pressed into the annular groove.

Unlocking:

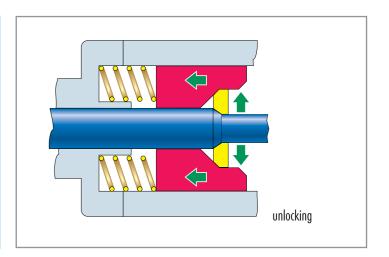
The reverse travel pressure releases the piston rod and it can return to the initial position.

- fail-safe by means of positive-locking
- holding forces up to several hundreds of tons
- exact locking point
- very simple installation
- small installation space
- high operational reliability
- reduced control effort
- reduced construction costs
- simplified machine construction

The **CyLock** is extended in the same manner as a conventional double-action cylinder by applying pressure to the piston side. When the final position is reached-locking segments are pressed into an annular groove in the piston rod. This is effected by a spring-operated slide which passes over the segments and secures them radially so that they cannot disengage from the piston rod.

This creates a positive-locking joint.

The pressure supply can now be interrupted. The cylinder's holding force in this locked position is a multiple of the stroke force.

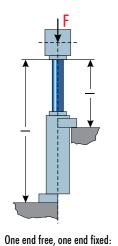

The locking system ensuresthat the cylinder can be moved to a defined position millions of times, even under the effect of maximum loads and impact loads, and can be maintained in this position without hydraulic or pneumatic pressure.

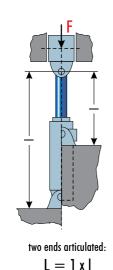
The piston rod retracts by applying pressure to the rod side of the piston face. This reverse travel pressure simultaneously raises the slide from its locking position so that the segments can be pushed out of the annular groove by the returning piston rod.

Cylinders with double sided or bottom locking function work according to the same principle.

Options

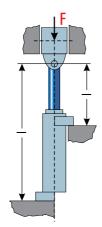
- mechanical/electrical locking indication
- · adjustable final position damping
- magnetic piston
- Reed switches
- Viton seals
- power stroke in final position
- tolerance locking
- pre-load force

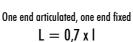


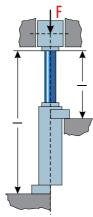

Control system Planning tips

Load case after Euler

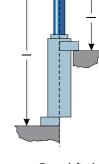
The most important criteria when determining the piston diameter are the stroke and holding forces. Our system permits much higher values than conventional solutions. Normally smaller cylinders can be used. However, even our design is unable to overcome certain physical conditions. We thus recommend to verify a cylinder size on the basis of the Euler diagram. The intersections of straight lines of the effective length L and diameter curves show the permissible column load.

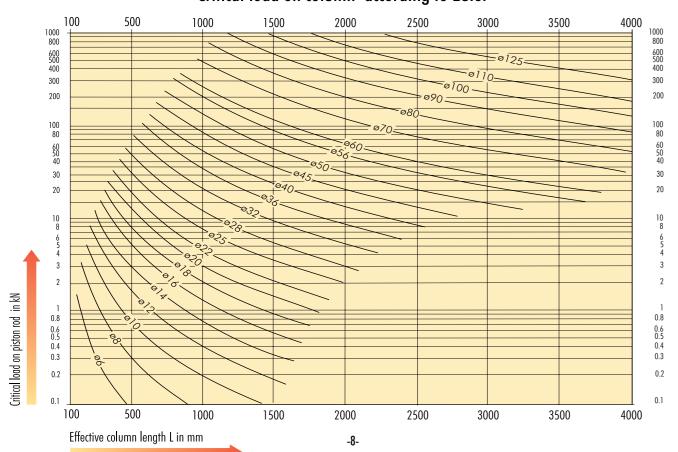


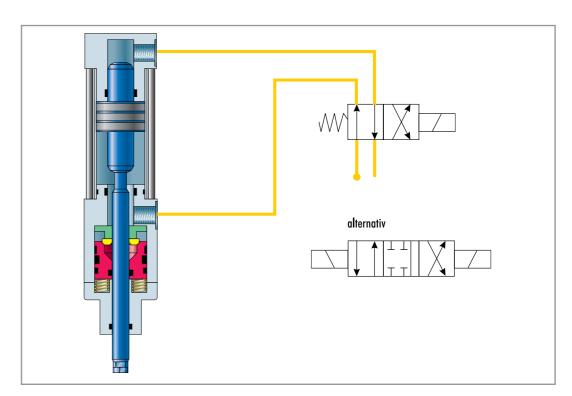

L = 2 x I



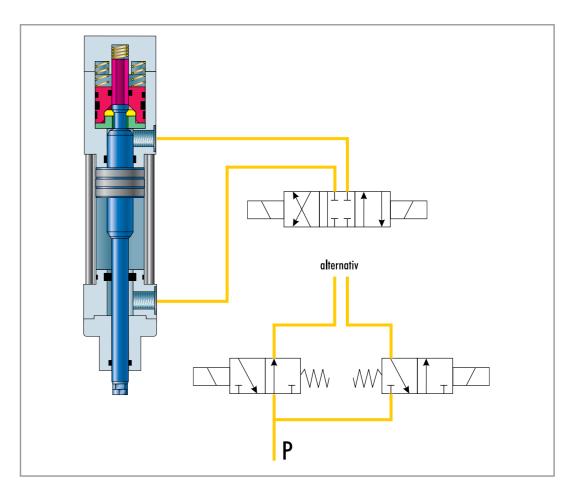
Fundamentally the following points are always important:


- The intersection of the parallels to the abscissa and ordinate through the effec tive column length L and the maximum load result in the required piston rod
- The intersections of straight lines through the effective column length with the diameter curves results in the permissible column load.



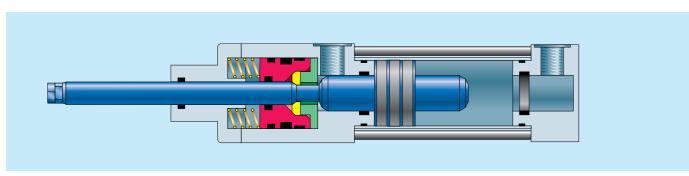


Two ends fixed L = 0.5 x I

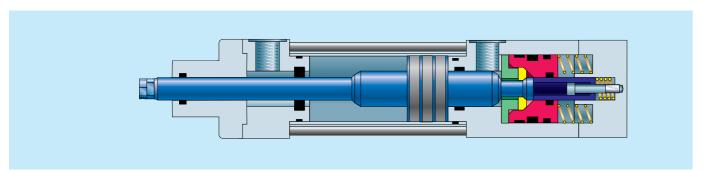

Critical load on column according to Euler

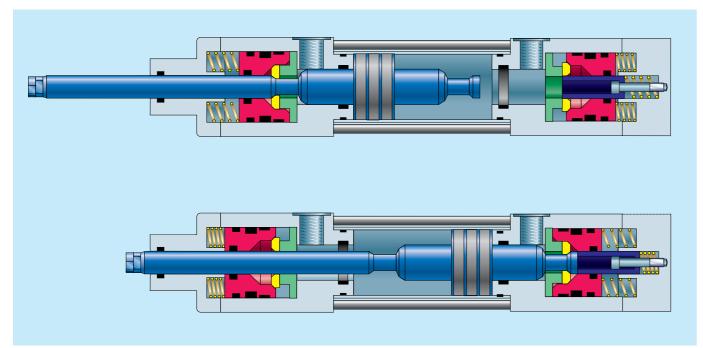
Control system

The CyLock requires no additional control elements compared to a normal cylinder. Once the cylinder reaches its lockable final position the lock is automatically triggered. One precondition here is that the pressure connection on the locking side is depressurised. This is carried out in any case with a standard



If a heavy load is raised and locked care must be taken to ensure that the pressure is applied to the piston space on the stroke side before being released so as to bear the load since otherwise an uncontrolled downwards movement can occur.


This circuit avoids dangerous movements when the lock is released.


Overview locking types

CyLock Type 01, locks with extended rod

CyLock Type 02, locks with retracted rod

CyLock Type 03, locks with extended and retracted rod

Indication "End of stroke/ Locked position"

Locking indication with proximity switches

The final position of the cylinder can be indicated with proximity switches. With cylinders with locking function not primarily the final position is inquired but the locked condition. The final position arises from that inevitably. With the three types (00 - 03) the following conditions must be distinguished:

Type 00:

- Piston rod extended or retracted, without locking

Typ 01:

- Piston rod extended and locked
- Piston rod retracted

Typ 02:

- Piston rod extended
- Piston rod retracted and locked

Typ 03:

- Piston rod extended and locked
- Piston rod retracted and locked

All sensors require no further adjustments once fitted.

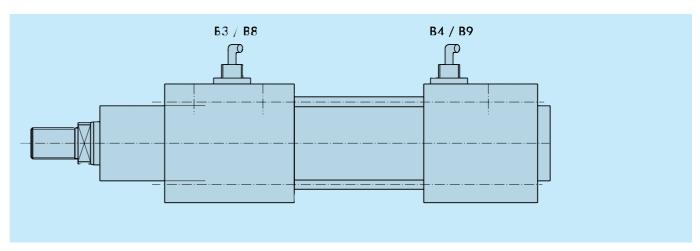
Two types are available:

- NAMUR sensor as a two wire inductive sensor
- PNP sensor as a three wire inductive sensor

NAMUR Sensor

The Namur sensor is designed to be used in hazardous areas and is "intrinsically safe". These sensors are supplied with an amplifier which is mounted by the control panel of the moulding machine (see page 13 of catalogue for wiring diagram).

Amplifiers are normally supplied to work fromm 220 V AC, but can also be supplied for 110 V AC or 24 V DC.


PNP Sensor

Three wires are wired directly into the machine and require a DC voltage of 10 - 30 V. Please see below for detailled informations in which position the sensors are mounted to the cylinder, i. e. axially or radially.

The following table shows in which position the sensors are mounted to the cylinder.

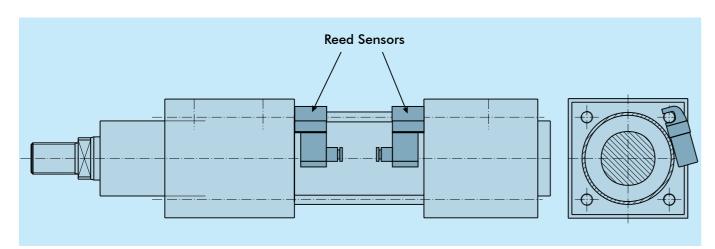
NAMUR sens	sors
В3	radial on rod side
B4	radial on piston side

PNP sensor	S
B8	radial on rod side
В9	radial on piston side

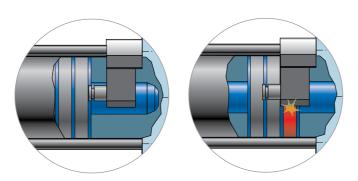
-11-

Position of sensors (NAMUR and PNP)

-10-

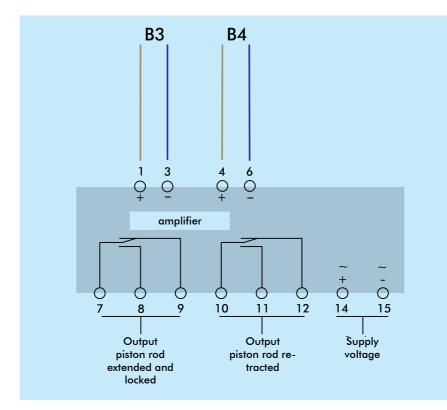

Stroke indication with Reed sensors

Wiring diagram NAMUR- and PNP-Sensors

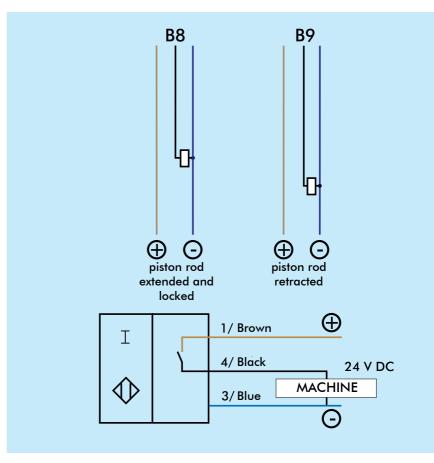

Stroke indication with Reed sensors (pneumatic series only)

Pneumatic cylinders work with significantly less operating pressure than hydraulic

ones. That is the reason why the cylinder tube normally is made of aluminium. This allows additionally to the locking indication with proximity switches the use of Reed switches which react to magnetic pulses. The piston is equipped with a permanent magnet on which the Reed switch responds from outside and so indicates the position. By axial positioning of the switch, any desired stroke position can be indicated. Therefore it is mounted to the tie rod of the cylinder with direct contact with the cylinder tube.



Position of Reed sensors (example, pneumatic series only)



In this stroke position of the magnetic piston, the switch does not react.

Here the magnetic piston and the switch are in contact - the pulse is indicated.

Wiring diagram
2-wire NAMUR sensors
(example, cylinder type 01)

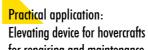
Wiring diagram
3-wire-PNP-sensors
(example, cylinder type 01)

-12-

Series HA/HB, HW/HY

Exemplary applications

Due to the failsafe function in locked position and the the high stroke and holding forces you will find applications of the CyLock cylinders particularly in applications of reshaping industry, clamping units, safety devices on workplaces and closing systems.



Due to the high holding forces in the locked position the CyLock is suited especially for presses.

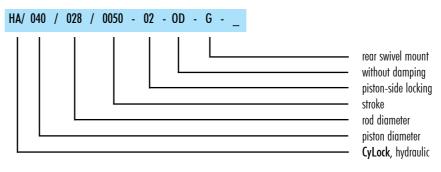
If a **CyLock** with piston-sided locking is used it will meet all security demands because of its self-retention.

Practical application: Safety cylinders on printing rollers in the paper industry

One cylinder locking on the piston side and one locking on the rod side ensure optimal operational security whilst roller supply to the machine.

for repairing and maintenance purposes

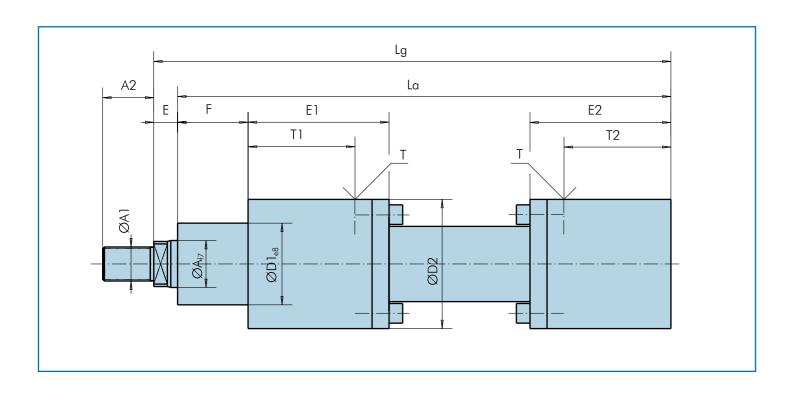
Practical application:


CyLock with rod- and piston-sided locking for the adjustment of idlers in Kaplan-turbines

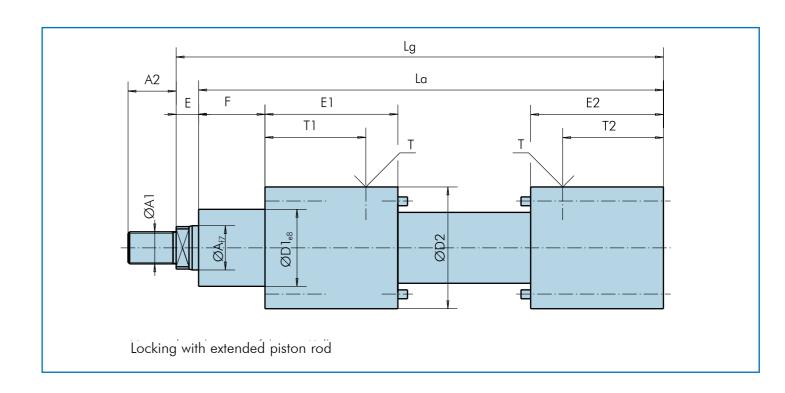
The self retention in the locked position ensures the safe closure even when the energy is disconnected.

		Overview hy	draulic series		
Series	НА	НВ	HW	НҮ	HS*
Design	screw co	nstruction	tie rod version with	square cross-section	tie rod version with round cross-section
Piston diameter		25 - 2	250 mm		25 - 200 mm with pre-load
Stroke length			free choice		
Holding forces		double clamping force in locked position		double clamping force in locked position	
Pressure			up to 250 bar		
Final pos. damping			optional		
Locking inquiry			optional, electronic or mechanical		
Seals		ste	pseals in double arrangement, glydr	ings	
Guides			metal-free		

^{*}This type is offered as a separate series, CyPull (see separate catalogue)


Order codes (example):

double-action hydraulic cylinder



Piston Ø	A	A1	A2	E	El	E2	F	D1	D2	Ţ	TI	T2	La Stroke +	Lg Stroke +
25	16	M 12 x 1,25	15	10	66	66	30	35	65	1/4"	26	26	142	152
32	20	M 16 x 1,5	20	12	74,5	74,5	30	40	75	3/8"	28	28	149	161
40	28	M 22 x 1,5	23	15	84	84	30	55	98	1/2"	37	35	174	189
50	36	M 28 x 1,5	24	21	90,5	90,5	30	63	112	1/2"	38	38	177	198
63	45	M 35 x 1,5	25	25	96	96	35	75	125	3/4"	41	41	193	218
80	56	M 45 x 1,5	44	28	99,5	99,5	35	90	150	3/4"	42	42	205	233
100	70	M 58 x 1,5	40	33	113,5	113,5	45	110	180	1"	45	45	229	262
125	90	M 65 x 1,5	52	33	108	108	50	132	200	1"	41	41	223	256

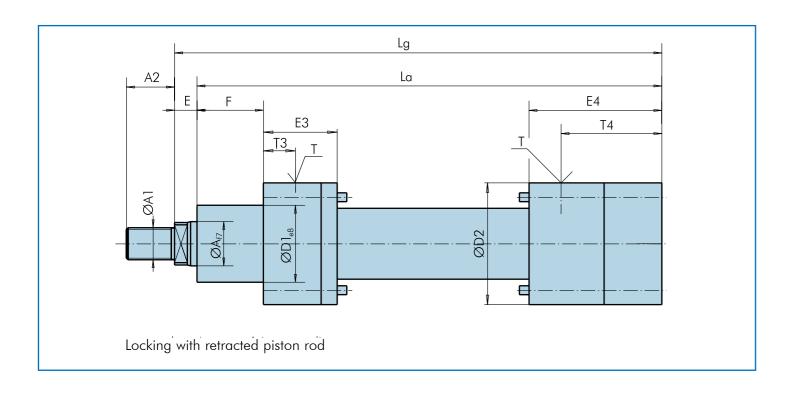
Further piston diameters on request

Piston Ø		Stroke force (kN)		Retraction force (kN)					
PISTOII 2	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar			
25	4,9	7,4	9,8	2,9	4,4	5,8			
32	8,0	12,0	16,0	4,9	7,4	9,8			
40	12,6	19,0	25,2	6,4	9,6	12,8			
50	19,6	29,4	39,2	9,5	14,3	19,0			
63	31,2	46,8	62,4	15,3	23,0	30,6			
80	50,3	75,5	100,6	25,6	38,4	51,2			
100	78,5	117,8	157,0	40,1	60,2	80,2			
125	122,7	184,1	245,4	59,1	88,7	118,2			

Hydraulic cylinder with rod-side locking

Piston Ø	A	Al	A2	E	El	E2	F	D1	D2	T	TI	T2	La Stroke +	Lg Stroke +
25	16	M 12 x 1,25	15	10	125	66	30	35	65	1/4"	62	26	201	211
32	20	M 16 x 1,5	20	12	142,5	74,5	30	40	75	3/8"	95	28	217	229
40	28	M 22 x 1,5	23	15	142	84	30	55	98	1/2"	92	35	232	247
50	36	M 28 x 1,5	24	21	149,5	90,5	30	63	112	1/2"	98,5	38	236	257
63	45	M 35 x 1,5	25	25	163	96	35	75	125	3/4"	85	41	260	285
80	56	M 45 x 1,5	44	28	194,5	99,5	35	90	150	3/4"	138	42	300	328
100	70	M 58 x 1,5	40	33	257,5	113,5	15	110	180	1″	190	45	343	376
125	90	M 65 x 1,5	52	33	221	108	50	132	200	1"	151	41	336	369

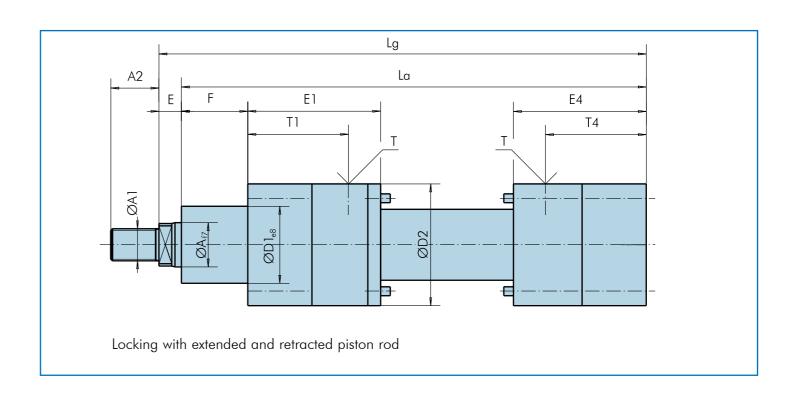
Further piston diameters on request


Piston Ø	Holdin	g force		Stroke force (kN)		Retraction force (kN)			
PISION Ø	НА	НВ	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar	
25	10	20	4,9	7,4	9,8	2,9	4,4	5,8	
32	30	60	8,0	12,0	16,0	4,9	7,4	9,8	
40	44	88	12,6	19,0	25,2	6,4	9,6	12,8	
50	70	140	19,6	29,4	39,2	9,5	14,3	19,0	
63	112	224	31,2	46,8	62,4	15,3	23,0	30,6	
80	180	360	50,3	75,5	100,6	25,6	38,4	51,2	
100	282	564	78,5	117,8	157,0	40,1	60,2	80,2	
125	440	880	122,7	184,1	245,4	59,1	88,7	118,2	

-17--16-

CyLock

Hydraulic cylinder with piston-side locking



La A1 Piston Ø Α A2 E3 **E4** D1 D2 T3 T4 Stroke + Stroke + M 12 x 1,25 1/4" M 16 x 1,5 74,5 141,5 3/8" 1/2" M 22 x 1,5 1/2" 124,5 M 28 x 1,5 90,5 175,5 M 35 x 1,5 3/4" M 45 x 1,5 99,5 234,5 3/4" 1" M 58 x 1,5 113,5 260,5 M 65 x 1,5

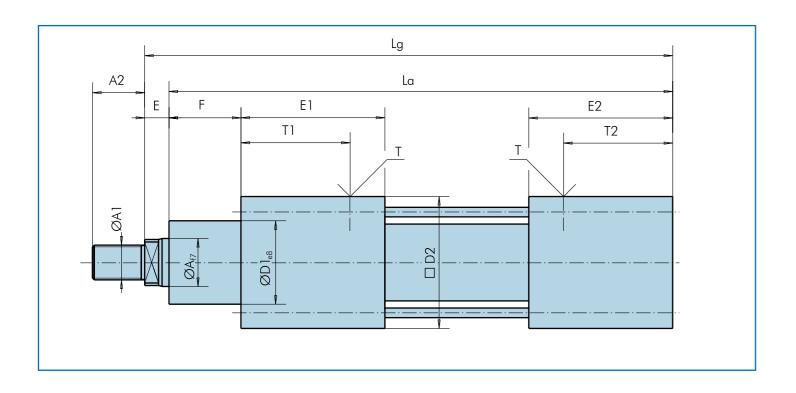
Further piston diameters on request

Piston Ø	Holdin	ig force		Stroke force (kN)		Retraction force (kN)			
PISIOII &	НА	НВ	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar	
25	8	16	4,9	7,4	9,8	2,9	4,4	5,8	
32	16	32	8,0	12,0	16,0	4,9	7,4	9,8	
40	23	46	12,6	19,0	25,2	6,4	9,6	12,8	
50	33	66	19,6	29,4	39,2	9,5	14,3	19,0	
63	54	108	31,2	46,8	62,4	15,3	23,0	30,6	
80	92	184	50,3	75,5	100,6	25,6	38,4	51,2	
100	138	276	78,5	117,8	157,0	40,1	60,2	80,2	
125	228	456	122,7	184,1	245,4	59,1	88,7	118,2	

Hydraulic cylinder with locking on both sides

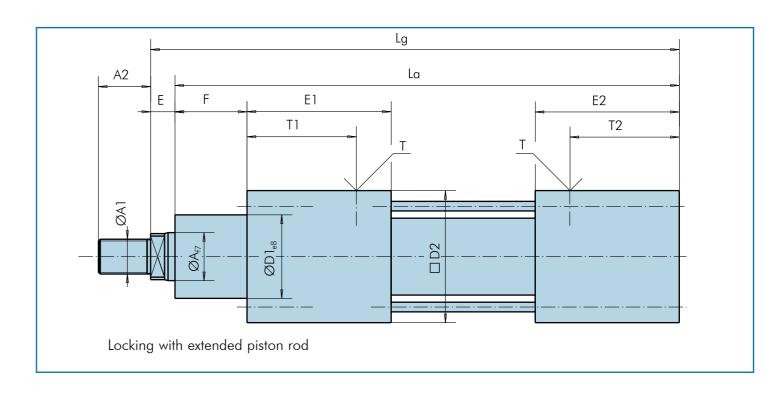
Piston Ø	A	Al	A2	E	El	E4	F	D1	D2	T	TI	T4	La Stroke +	Lg Stroke +
25	16	M 12 x 1,25	15	10	125	130	30	35	65	1/4″	62	88	265	275
32	20	M 16 x 1,5	20	12	141,5	142	30	40	75	3/8"	95	94	284	296
40	28	M 22 x 1,5	23	15	142	162	30	55	98	1/2"	92	112	310	325
50	36	M 28 x 1,5	24	21	149,5	175,5	30	63	112	1/2"	98,5	124,5	321	342
63	45	M 35 x 1,5	25	25	163	203	35	75	125	3/4"	85	98	367	392
80	56	M 45 x 1,5	44	28	194,5	234,5	35	90	150	3/4"	138	178	435	463
100	70	M 58 x 1,5	40	33	257,5	160,5	15	110	180	1"	190	193	490	523
125	90	M 65 x 1,5	52	33	221	256	50	132	200	1″	151	186	484	517

Further piston diameters on request


Piston Ø	Holdin	g force		Stroke force (kN)			Retraction force (kN)			
PISIOII SO	HA	НВ	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar		
25	8	16	4,9	7,4	9,8	2,9	4,4	5,8		
32	16	32	8,0	12,0	16,0	4,9	7,4	9,8		
40	23	46	12,6	19,0	25,2	6,4	9,6	12,8		
50	33	66	19,6	29,4	39,2	9,5	14,3	19,0		
63	54	108	31,2	46,8	62,4	15,3	23,0	30,6		
80	92	184	50,3	75,5	100,6	25,6	38,4	51,2		
100	138	276	78,5	117,8	157,0	40,1	60,2	80,2		
125	228	456	122,7	184,1	245,4	59,1	88,7	118,2		

-19--18-

Double-action hydraulic cylinder


Piston Ø	A	Al	A2	E	El	E2	F	D1	D2	T	ΤΊ	T2	La Stroke +	Lg Stroke +
25	16	M 12 x 1,25	15	10	56	56	30	35	50	1/4"	26	26	142	152
32	20	M 16 x 1,5	20	12	59,5	64,5	30	40	55	3/8"	28	33	154	166
40	28	M 22 x 1,5	23	15	69	69	30	55	75	1/2"	37	35	174	189
50	36	M 28 x 1,5	24	21	70,5	70,5	30	63	85	1/2"	32,5	38	177	198
63	45	M 35 x 1,5	25	25	76	76	35	75	90	3/4"	41	41	193	218
80	56	M 45 x 1,5	44	28	80	80	35	90	120	3/4"	42	42	205	233
100	70	M 58 x 1,5	40	33	89	89	45	110	140	1"	45	45	229	262
125	90	M 65 x 1,5	52	33	83	83	50	132	160	1″	41	41	223	256

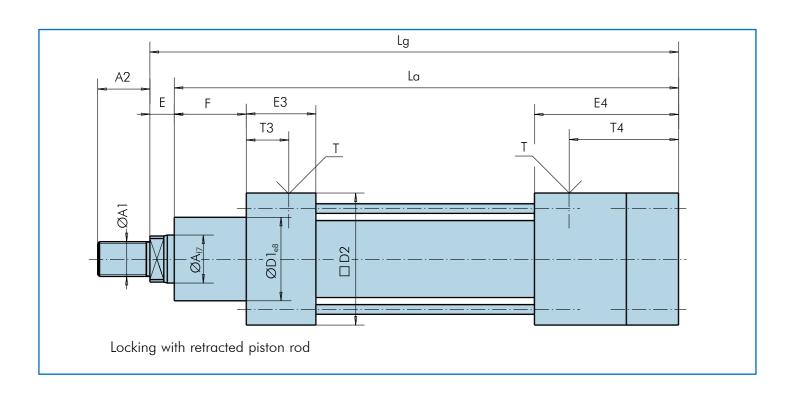
Further piston diameters on request

Piston Ø		Stroke force (kN)			Retraction force (kN)	
PISIOII Ø	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar
25	4,9	7,4	9,8	2,9	4,4	5,8
32	8,0	12,0	16,0	4,9	7,4	9,8
40	12,6	19,0	25,2	6,4	9,6	12,8
50	19,6	29,4	39,2	9,5	14,3	19,0
63	31,2	46,8	62,4	15,3	23,0	30,6
80	50,3	75,5	100,6	25,6	38,4	51,2
100	78,5	117,8	157,0	40,1	60,2	80,2
125	122,7	184,1	245,4	59,1	88,7	118,2

-20-

Hydraulic cylinder with rod-side locking

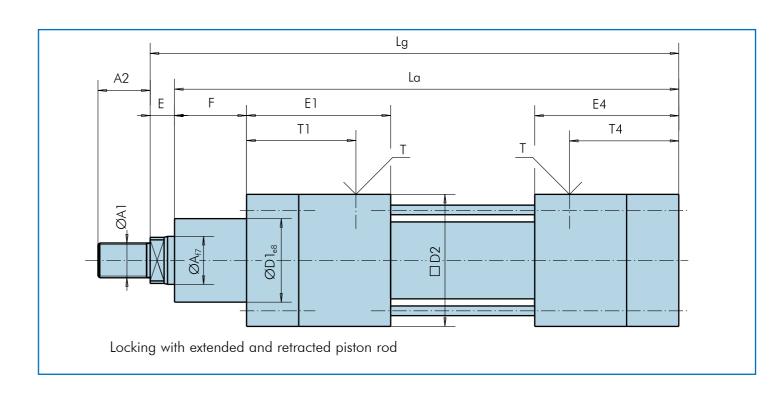
Piston Ø	A	Al	A2	E	E1	E2	F	D1	D2	T	ΤΊ	T2	La Stroke +	Lg Stroke +
25	16	M 12 x 1,25	15	10	115	56	30	33	50	1/4″	86	26	201	211
32	20	M 16 x 1,5	20	12	127,5	64,5	30	40	55	3/8"	100,5	33	222	234
40	28	M 22 x 1,5	23	15	127	69	30	55	75	1/2"	92	35	232	247
50	36	M 28 x 1,5	24	21	129,5	70,5	30	63	85	1/2"	94,5	38	236	257
63	45	M 35 x 1,5	25	25	143	76	35	75	90	3/4"	105	41	260	285
80	56	M 45 x 1,5	44	28	175	80	35	90	120	3/4"	138	42	300	328
100	70	M 58 x 1,5	40	33	203	89	45	110	140	1″	160	45	343	376
125	90	M 65 x 1,5	52	33	196	83	50	132	160	1″	151	41	336	369


Further piston diameters on request

Piston Ø	Holding 1	force (kN)		Stroke force (kN)			Retraction force (kN)	
PISIOII SO	HW	НҮ	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar
25	10	20	4,9	7,4	9,8	2,9	4,4	5,8
32	30	60	8,0	12,0	16,0	4,9	7,4	9,8
40	44	88	12,6	19,0	25,2	6,4	9,6	12,8
50	70	140	19,6	29,4	39,2	9,5	14,3	19,0
63	112	224	31,2	46,8	62,4	15,3	23,0	30,6
80	180	360	50,3	75,5	100,6	25,6	38,4	51,2
100	282	564	78,5	117,8	157,0	40,1	60,2	80,2
125	440	880	122,7	184,1	245,4	59,1	88,7	118,2

-21-

Hydraulic cylinder with piston-side locking


Piston Ø	A	Al	A2	E	E3	E4	F	D1	D2	T	Т3	T4	La Stroke +	Lg Stroke +
25	16	M 12 x 1,25	15	10	56	120	30	35	50	1/4"	26	91	206	216
32	20	M 16 x 1,5	20	12	59,5	126,5	30	40	55	3/8"	28	94	216	228
40	28	M 22 x 1,5	23	15	69	147	30	55	75	1/2"	37	112	252	267
50	36	M 28 x 1,5	24	21	70,5	155,5	30	63	85	1/2"	38	120,5	262	283
63	45	M 35 x 1,5	25	25	76	183	35	75	90	3/4"	41	145	300	325
80	56	M 45 x 1,5	44	28	80	215	35	90	120	3/4"	42	178	340	368
100	70	M 58 x 1,5	40	33	89	236	45	110	140	1"	45	193	376	409
125	90	M 65 x 1 5	52	33	83	231	50	132	160	1"	41	186	371	404

Further piston diameters on request

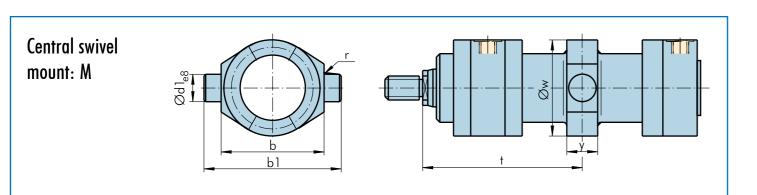
Distant (X	Holding	force (kN)		Stroke force (kN)			Retraction force (kN)	
Piston Ø	HW	НҮ	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar
25	8	16	4,9	7,4	9,8	2,9	4,4	5,8
32	16	32	8,0	12,0	16,0	4,9	7,4	9,8
40	23	46	12,6	19,0	25,2	6,4	9,6	12,8
50	33	66	19,6	29,4	39,2	9,5	14,3	19,0
63	54	108	31,2	46,8	62,4	15,3	23,0	30,6
80	92	184	50,3	75,5	100,6	25,6	38,4	51,2
100	138	276	78,5	117,8	157,0	40,1	60,2	80,2
125	228	456	122,7	184,1	245,4	59,1	88,7	118,2

-22-

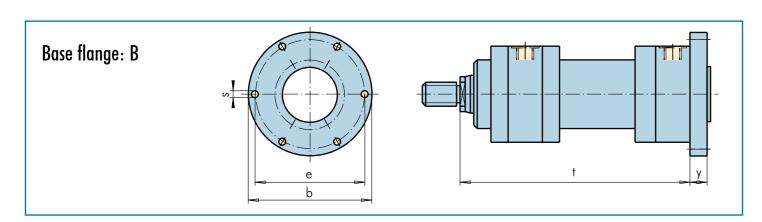
Hydraulic cylinder with locking on both sides

Piston Ø	A	Al	A2	E	E1	E4	F	D1	D2	T	TI	T4	La Stroke +	Lg Stroke +
25	16	M 12 x 1,25	15	10	115	120	30	33	50	1/4"	86	91	265	275
32	20	M 16 x 1,5	20	12	127,5	126,5	30	40	55	3/8"	95	94	284	296
40	28	M 22 x 1,5	23	15	127	147	30	55	75	1/2"	92	112	310	325
50	36	M 28 x 1,5	24	21	129,5	155,5	30	63	85	1/2"	94,5	120,5	321	342
63	45	M 35 x 1,5	25	25	143	183	35	75	90	3/4"	105	145	367	392
80	56	M 45 x 1,5	44	28	175	215	35	90	120	3/4"	138	178	435	463
100	70	M 58 x 1,5	40	33	203	236	45	110	140	1″	160	193	490	523
125	90	M 65 x 1,5	52	33	196	231	50	132	160	1"	151	186	484	517

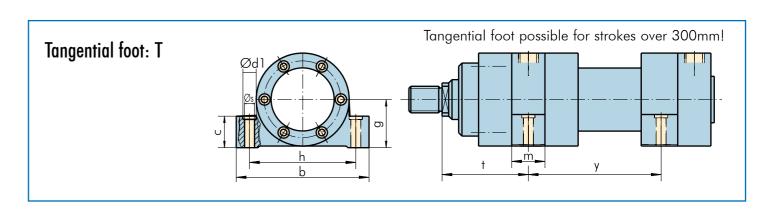
Further piston diameters on request

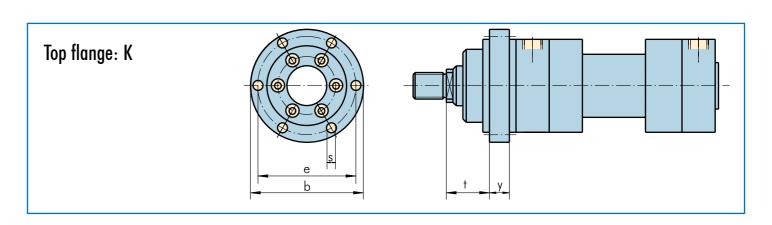

Piston Ø	Holding	force (kN)		Stroke force (kN)			Retraction force (kN)	
PISIOII 2	HW	НҮ	100 bar	150 bar	200 bar	100 bar	150 bar	200 bar
25	8	16	4,9	7,4	9,8	2,9	4,4	5,8
32	16	32	8,0	12,0	16,0	4,9	7,4	9,8
40	23	46	12,6	19,0	25,2	6,4	9,6	12,8
50	33	66	19,6	29,4	39,2	9,5	14,3	19,0
63	54	108	31,2	46,8	62,4	15,3	23,0	30,6
80	92	184	50,3	75,5	100,6	25,6	38,4	51,2
100	138	276	78,5	117,8	157,0	40,1	60,2	80,2
125	228	456	122,7	184,1	245,4	59,1	88,7	118,2

-23-



Fixtures for hydraulics

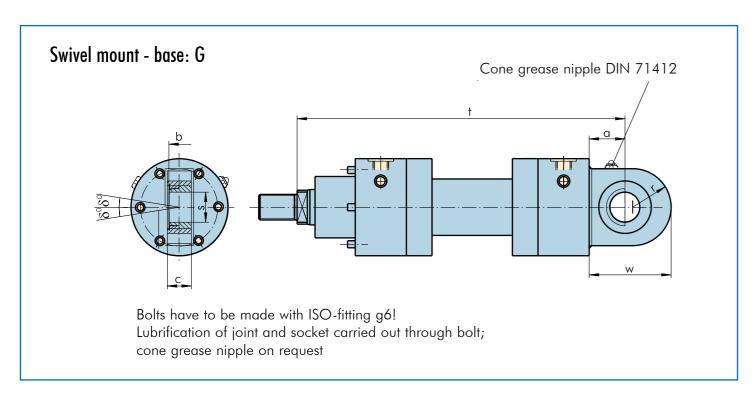

Pisto	n Ø	25	32	40	50	63	80	100	125	160	200
ŀ)	69	79	102	116	129	154	184	204		
b	1	109	119	142	156	169	204	244	284		
Ød	11 _{e8}	25	25	30	30	35	40	50	60		
	ſ	1,5	1,6	1,6	1,6	2,0	2,0	2,0	2,5	t	5
V	V	65	75	98	112	125	150	180	200	no recilies	5
)	1	30	30	35	35	40	45	55	65	5	5
	"01"	170	184,5	189,5	198	223	260	308	311,5		
t= 1/2 Stroke+	"02"	111	116,5	131,5	139	156	165	194	198,5		
1/2 SHUKET	"03"	170	184,5	189,5	198	223	260	308	311,5		


Pisto	on Ø	25	32	40	50	63	80	100	125	160	200
	е	80	100	115	135	150	170	210	235		
	b	100	120	130	160	180	200	250	280		
Q	Øs		9	9	14	14	14	18	22		IS.
	у		25	25	25	30	30	40	45		red nest
	"01"	211	229	247	257	285	328	376	369		0
t= Stroke+	"02"	216	228	267	283	325	368	409	404		
JII UKG T	"03"	275	296	325	342	392	463	523	517		

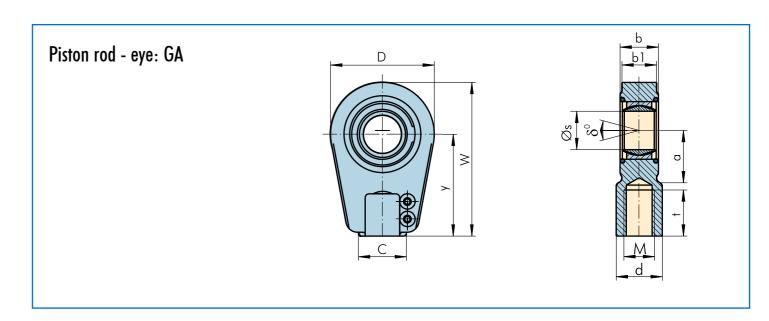
-24-

Fixtures for hydraulics

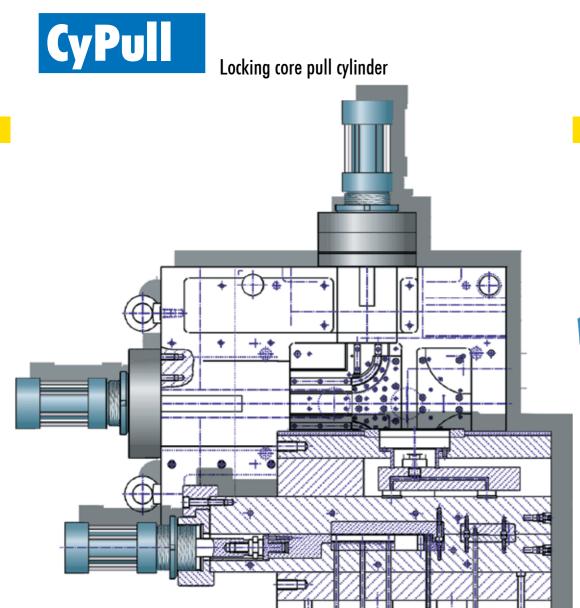
P	iston Ø	25	32	40	50	63	80	100	125	160	200
	b	100	110	140	155	180	210	250	290		
	h	82	92	120	132	150	178	215	245		
	g-0,2	37	42	54	61	67	80	95	105		
	Ø d1	15	15	18	18	20	16	32	38		
	C	21	24	30	34	38	45	53	60		
	Øs	9	9	11	11	14	18	22	26		on request
	m	20	25	30	35	40	55	60	65		e L
	"01"	165	182	187	198	223	265	310,5	311,5		
t	"02"	106	114	129	139	156	170	196,5	198,5		
	"03"	165	182	187	198	223	265	310,5	311,5		
y= Stroke+	"01", "02, and "03"	-20	-25	-24	-29	-34	-44	-53	-58		


Piston Ø	25	32	40	50	63	80	100	125	160	200
е	80	100	115	135	150	170	210	235		
b	100	120	130	160	180	200	250	280		ts:
S	9	9	9	14	14	14	18	22		request
у	25	25	25	25	30	30	40	45		6 6
t	15	17	20	26	30	33	38	38		

-25-


Fixtures for hydraulics

Pisto	on Ø	25	32	40	50	63	80	100	125	160	200
(a	38	45	51	61	69	88	100	115		
I	b	16-0,12	20-0,12	22-0,12	25-0,12	28-0,12	35-0,12	44-0,15	49-0,15		
	С	19	23	28	30	35	40	50	55		
:	S	20-0,12	25-0,12	30-0,12	35-0,12	40-0,12	50-0,12	60-0,12	70-0,12		
	r	25	27,5	32,5	41,5	50	61,5	70	82		quest
1	w	63	72,5	83,5	102,5	119	149,5	170	197		on request
8	5°	9°	7°	6°	6°	7°	6°	6°	6°		
	"01"	249	274	298	318	354	416	476	484		
t= Stroke+	"02"	254	273	318	344	394	456	509	519		
JII UKE T	"03"	313	341	376	403	461	551	623	632		


-26-

Fixtures for hydraulics

Piston Ø	25	32	40	50	63	80	100	125	160	200
Ø s Tolerance	20 -0,01	25 20-0,12	30 -0,01	35 -0,01	40 -0,012	50 -0,012	60 -0,012	70 -0,015	90 -0,02	110 -0,02
M	M 16 x 1,5	M 16 x 1,5	M 22 x 1,5	M 28 x 1,5	M 35 x 1,5	M 45 x 1,5	M 58 x 1,5	M 65 x 1,5	M 100 x 2	M 120 x 3
a	25	25	30	38	45	55	65	75	90	115
b	19	23	28	30	35	40	50	55	65	80
b1	16-0,12	20-0,12	22-0,12	25-0,12	28-0,12	35-0,12	44-0,15	49-0,15	60-0,2	70-0,2
С	36	36	40	50	60	72	90	100	156	195
D	56	56	64	78	94	116	130	150	210	265
Ød	25	25	32	40	49	61	75	86	124	152
t	17	17	23	29	36	46	59	66	101	125
у	50	50	60	70	85	105	130	150	210	265
W	80	80	94	112	135	168	200	232	323	407,5
δ°	9°	7°	6°	6°	7°	6°	6°	6°	5°	6°

-27-

Developed to meet the needs of mould manufacturers

CyPull is a special product developed to meet the needs of mould manufacturers. It is a hydraulic cylinder with an integrated positive locking device. The cylinder has been used since the early 80's extensively in the German mould making industry. It was specially suited to the more complex mould designs where considerable cost reductions can be made.

High mould pressure means that regular cylinders require additional locking mechanism. The **CyPull** incorporates an

automatic positive locking device which eliminates the need for expensive external locking systems. By incorporating an internal locking device a considerable space saving is achieved. The design of the CyPull is extremely rigid. Once adjusted the designs allows the cylinder to repeat the cycle accurately every time, eliminating the need to further maintenance, increasing the productivity.

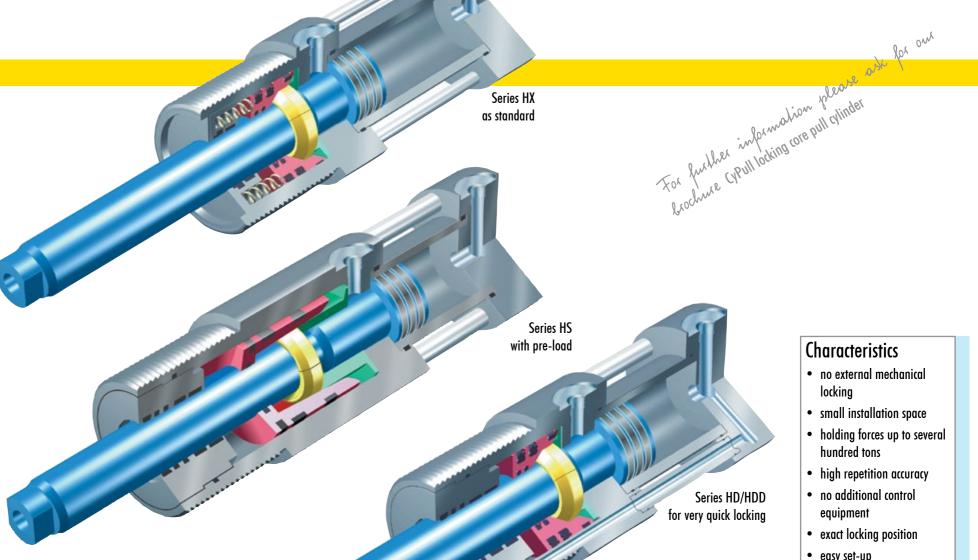
Optional integrated limit switches are available to provide a perfect link between the cylinder and the injection mould machine.

The function of that cylinder is the same as the **CyLock** locking cylinder. The cylinder extends by applying pressure to

-28-

extensive range of products to meet every application. The very robust model line was specially developed for the use in aluminium die cast moulds. In special applications we recommend the use of a cylinder with preload. This allows compensation for elasticity and tolerances at the end of the stroke.

back port of the cylinder. We have an

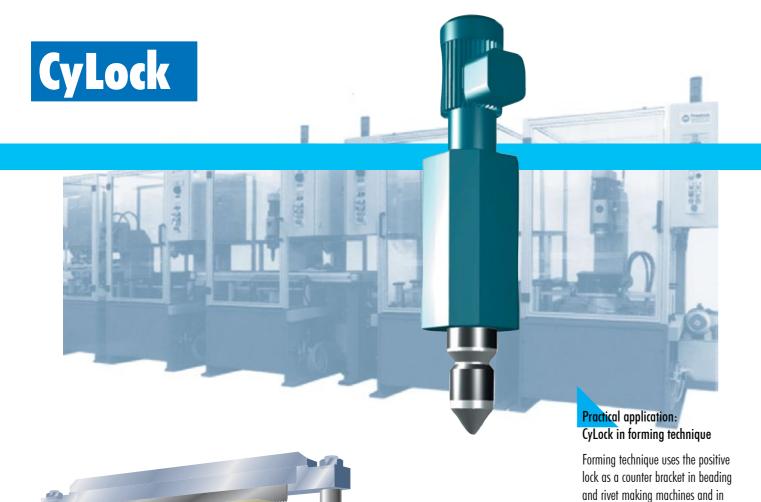

Accessories

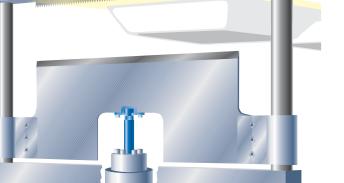
A complete mounting system is available, that makes it simple to adapt the CyPull to existing moulds

- Alignment screws with core slide coupling studs
- Counterpiece for alignment screws
- Flanges
- Groove nuts

Options

- Two types of integrated limit switches are available:
- Namur type with external amplifier 3 - wire sensor (PnP)
- Viton seals for high temperature applications
- double rod ends for external limit switches

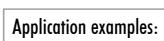



Characteristics

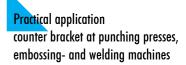
- no external mechanical locking
- small installation space
- holding forces up to several hundred tons
- high repetition accuracy
- no additional control equipment
- exact locking position
- easy set-up
- operation, free of maintenance
- also with pre-load
- · free choice of stroke length
- non metallic guides

Series	НХ	HD/HDD	HS						
Design		tie rod version with round cross-section							
Piston diameter	25 -125 mm	25 -200 mm	25 -200 mm with pre-load						
Stroke		free choice							
Holding forces		double clamping force in locked position							
Pressure		up to 200 bar							
Locking	spring operated	hydraulic with by-pass	hydraulic with by-pass						
Locking inquiry		optional, electronic or mechanical							
Seals	optional, Viton seals in the range of high temperatures								
Accessories	Mounting flanges ● Groove nuts ● Alignment screws with coupling studs ● Counterpiece for alignment screw								

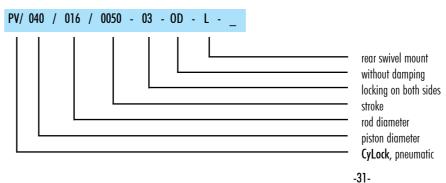
-29-


Pneumatic cylinder with tolerance positive locking

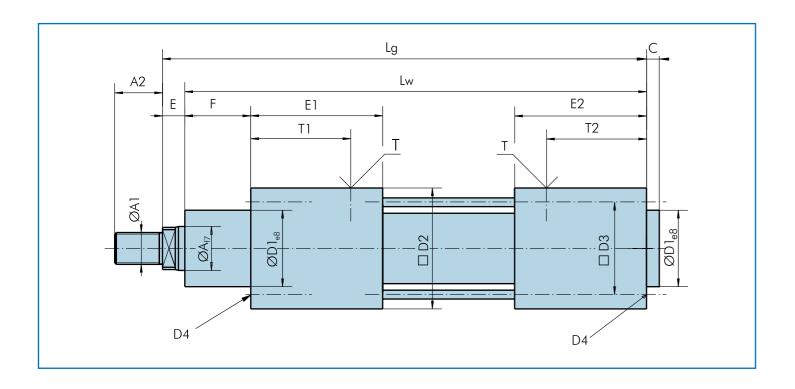
Here the positive lock is already activated shortly before reaching the end position. This field of tolerance can be up to 1mm. During this process a unintentional retreat is impossible. Against it the move up automatically takes place with reaching the stud. These cylinders are the right solution whenever different thicknesses of foil have to be compensated in packing industry. Besides they are idael clamping devices for rough toleranced components.


-30-

swash plate systems.


- Closing cylinders
- Clamping device for wide toleranced components
- Automatic adjustment to various film thicknesses (packaging industry)
- Shaping technique

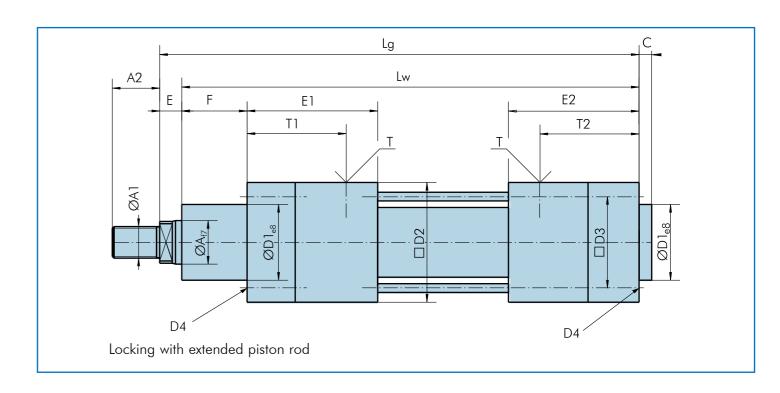
An optional technique enables a force enhancing during the process of punching, pressing, embossing and welding. This superelevated force is definite determinable and follows the ideal nominal line.


		Overview	pneumatic series	
	Series	PV	PT	PH
	Special design		with tolerance locking	with hydrailic power stroke
)	Design		tie rod version with square cross-section	
	Piston diameter		40 -250 mm	
	Stroke		free choice	
	Pressure		up to 10 bar	
	Guides		metal free	
	Magnetic piston		on request	
	Locking inquiry		optional, electronic or mechanical	
	Final position damping		on request	

Order codes (example):

CyLock Series PV - 01

Double-action pneumatic cylinder

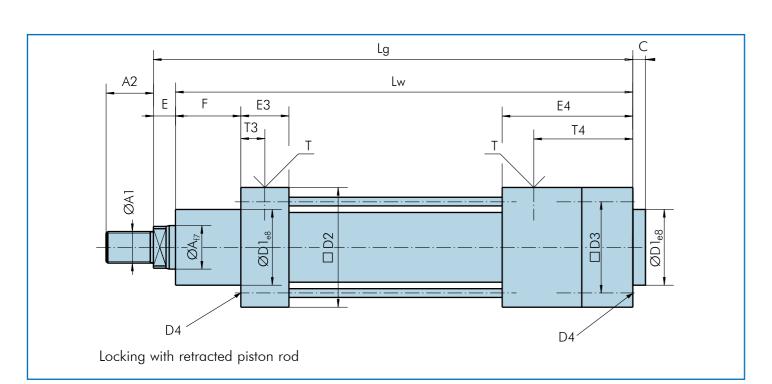


Piston Ø	A	Al	A2	E	El	E2	F	D1	D2	D3	4 x D4 thread depth	T	TI	T2	LW* +Stroke	LG* +Stroke	С
40	16	M 12 x 1,25	24	8	33	28	24	35	54	37	M 6 x 15	1/4"	16	14	125	133	4
50	20	M 16 x 1,5	32	10	30	30	29	40	64	45	M 8 x 17	1/4"	16	16	131	141	4
63	20	M 16 x 1,5	33	9	38	29	30	40	74	54,5	M 8 x 17	3/8"	19	15	147	156	4
80	25	M 20 x 1,5	40	13	44	35	33	45	94	69	M 10 x 20	3/8"	22	18	161	174	5
100	32	M 20 x 1,5	40	15	47	33	36	56	114	86	M 10 x 20	1/2"	24	17	174	189	6
125	32	M 27 x 2	48	20	47	55	45	60	140	110	M 12 x 28	1/2"	24	27	205	225	6
160	40	M 36 x 2	72	22	51	45	58	65	180	140	M 16 x 31	3/4"	25	22	224	246	6
200	40	M 36 x 2	70	28	63	48	67	75	220	175	M 16 x 31	3/4"	43	24	258	286	6

^{*}For magnetic piston + 10 mm

Piston Ø		Stroke force (kN)			Retraction force (kN)	
PISIOII 2	4 bar	6 bar	10 bar	4 bar	6 bar	10 bar
40	0,50	0,76	1,26	0,43	0,64	1,06
50	0,78	1,18	1,96	0,66	0,98	1,64
63	1,25	1,87	3,12	1,12	1,68	2,80
80	2,00	3,01	5,02	1,81	2,72	4,53
100	3,14	4,71	7,85	2,82	4,22	7,04
125	4,91	7,36	12,27	4,58	6,88	11,46
160	8,04	12,05	20,09	7,53	11,30	18,83
200	12,56	18,85	31,41	12,06	18,10	30,15

Pneumatic cylinder with rod-side locking

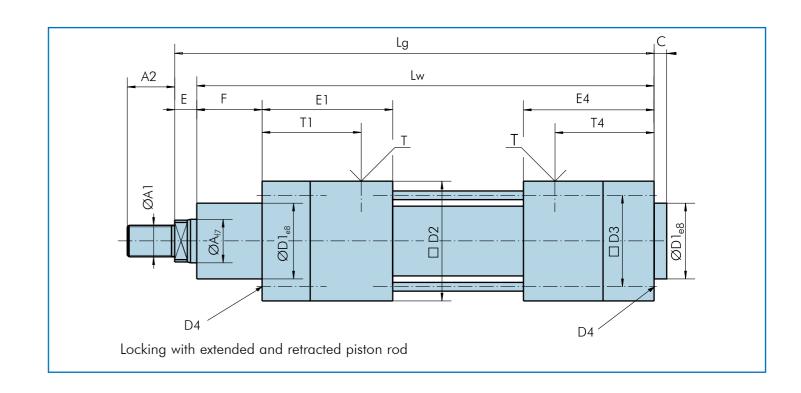


Piston Ø	A	Al	A2	E	E1	E2	F	D1	D2	D3	4 x D4 thread depth	Ţ	TI	T2	LW* +Stroke	LG* +Stroke	С
40	16	M 12 x 1,25	24	8	68	28	24	35	54	37	M 6 x 15	1/4"	58	14	160	168	4
50	20	M 16 x 1,5	32	10	70	30	29	40	64	45	M 8 x 17	1/4"	59	16	171	181	4
63	20	M 16 x 1,5	33	9	78	29	30	40	74	54,5	M 8 x 17	3/8"	66	15	187	196	4
80	25	M 20 x 1,5	40	13	89	35	33	45	94	69	M 10 x 20	3/8"	78	18	206	219	5
100	32	M 20 x 1,5	40	15	97	33	36	56	114	86	M 10 x 20	1/2"	80	17	224	239	6
125	32	M 27 x 2	48	20	97	55	45	60	140	110	M 12 x 28	1/2"	80	27	255	275	6
160	40	M 36 x 2	72	22	125	45	58	65	180	140	M 16 x 31	3/4"	107	22	298	320	6
200	40	M 36 x 2	70	28	113	48	67	75	220	175	M 16 x 31	3/4"	93	24	308	336	6

^{*}For magnetic piston + 10 mm

Distan (X	Holding force		Stroke force (kN)			Retraction force (kN)	
Piston Ø	(kN)	4 bar	6 bar	10 bar	4 bar	6 bar	10 bar
40	12,6	0,50	0,76	1,26	0,43	0,64	1,06
50	19,6	0,78	1,18	1,96	0,66	0,98	1,64
63	31,2	1,25	1,87	3,12	1,12	1,68	2,80
80	50,2	2,00	3,01	5,02	1,81	2,72	4,53
100	78,5	3,14	4,71	7,85	2,82	4,22	7,04
125	122,7	4,91	7,36	12,27	4,58	6,88	11,46
160	200,9	8,04	12,05	20,09	7,53	11,30	18,83
200	314,1	12,56	18,85	31,41	12,06	18,10	30,15

Pneumatic cylinder with piston-side locking



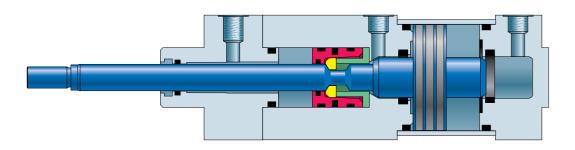
Piston Ø	A	Al	A2	E	E3	E4	F	D1	D2	D3	4 x D4 thread depth	T	T3	T4	LW* +Stroke	LG* +Stroke	С
40	16	M 12 x 1,25	24	8	33	83	24	35	54	37	M 6 x 15	1/4"	16	73	180	188	4
50	20	M 16 x 1,5	32	10	30	90	29	40	64	45	M 8 x 17	1/4"	16	79	191	201	4
63	20	M 16 x 1,5	33	9	38	89	30	40	74	54,5	M 8 x 17	3/8"	19	77	207	216	4
80	25	M 20 x 1,5	40	13	44	105	33	45	94	69	M 10 x 20	3/8"	22	94	231	244	5
100	32	M 20 x 1,5	40	15	47	113	36	56	114	86	M 10 x 20	1/2"	24	96	254	269	6
125	32	M 27 x 2	48	20	47	135	45	60	140	110	M 12 x 28	1/2"	24	118	285	305	6
160	40	M 36 x 2	72	22	51	149	58	65	180	140	M 16 x 31	3/4"	25	131	328	350	6
200	40	M 36 x 2	70	28	63	165	67	75	220	175	M 16 x 31	3/4"	43	145	375	403	6

^{*}For magnetic piston + 10 mm

Piston Ø	Holding force		Stroke force (kN)			retraction force (kN)	
PISIOII SO	(kN)	4 bar	6 bar	10 bar	4 bar	6 bar	10 bar
40	10,6	0,50	0,76	1,26	0,43	0,64	1,06
50	16,46	0,78	1,18	1,96	0,66	0,98	1,64
63	28,06	1,25	1,87	3,12	1,12	1,68	2,80
80	45,3	2,00	3,01	5,02	1,81	2,72	4,53
100	70,47	3,14	4,71	7,85	2,82	4,22	7,04
125	114,67	4,91	7,36	12,27	4,58	6,88	11,46
160	188,34	8,04	12,05	20,09	7,53	11,30	18,83
200	301,54	12,56	18,85	31,41	12,06	18,10	30,15

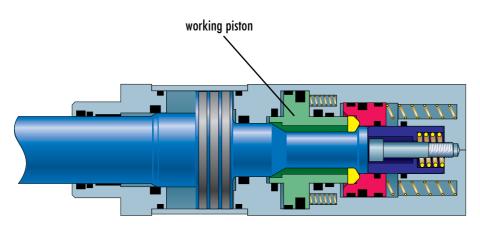
Pneumatic cylinder with locking on both sides

Piston Ø	A	Al	A2	E	E1	E 4	F	D1	D2	D3	4 x D4 thread depth	T	TI	T4	LW* +Stroke	LG* +Stroke	С
40	16	M 12 x 1,25	24	8	68	83	24	35	54	37	M 6 x 15	1/4"	58	73	215	223	4
50	20	M 16 x 1,5	32	10	70	90	29	40	64	45	M 8 x 17	1/4"	59	79	231	241	4
63	20	M 16 x 1,5	33	9	78	89	30	40	74	54,5	M 8 x 17	3/8"	66	77	247	256	4
80	25	M 20 x 1,5	40	13	89	105	33	45	94	69	M 10 x 20	3/8"	78	94	276	289	5
100	32	M 20 x 1,5	40	15	97	113	36	56	114	86	M 10 x 20	1/2"	80	96	304	319	6
125	32	M 27 x 2	48	20	97	135	45	60	140	110	M 12 x 28	1/2"	80	118	335	355	6
160	40	M 36 x 2	72	22	125	149	58	65	180	140	M 16 x 31	3/4"	107	131	402	424	6
200	40	M 36 x 2	70	28	113	165	67	75	220	175	M 16 x 31	3/4"	93	145	425	453	6


^{*}For magnetic piston + 10 mm

Piston Ø	Holding	force (kN)		Stroke force (kN)			Retraction force (kN)	
PISIOII 2	pressure	traction	4 bar	6 bar	10 bar	4 bar	6 bar	10 bar
40	12,6	10,6	0,50	0,76	1,26	0,43	0,64	1,06
50	19,6	16,46	0,78	1,18	1,96	0,66	0,98	1,64
63	31,2	28,06	1,25	1,87	3,12	1,12	1,68	2,80
80	50,2	45,3	2,00	3,01	5,02	1,81	2,72	4,53
100	78,5	70,47	3,14	4,71	7,85	2,82	4,22	7,04
125	122,7	114,67	4,91	7,36	12,27	4,58	6,88	11,46
160	200,9	188,34	8,04	12,05	20,09	7,53	11,30	18,83
200	314,1	301,54	12,56	18,85	31,41	12,06	18,10	30,15

-35-

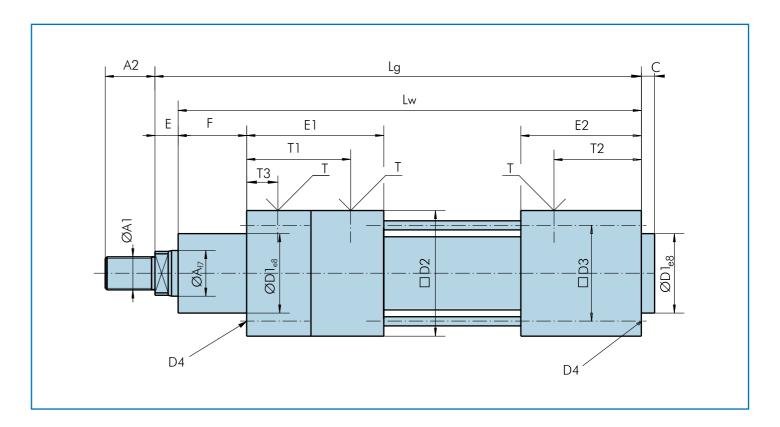

with tolerance locking and power stroke

The following types of the pneumatic locking cylinder were developed especially for the areas of shaping technique and packaging industry.

Pneumatic cylinder with tolerance locking

Pneumatic locking cylinders in "PV" series have an exactly defined and reproducible locking point in the final position. For constructions where the desired locking point can change from stroke to stroke "PT" series was developed. Here the locking system comes into effect shortly before reaching the final position and passes through a tolerance field up to the absolute final position in which an undesired return movement is impossible.

Pneumatic locking cylinder with power stroke


With many applications of linear drive technology the force requirement isn't constant during the whole movement. So traditional technology has to design the machine with the maximum required force. Mechanical auxiliary constructions like toggle levers produce a force enhancement in the final position which is generally required in punching processes. Unfortunately the nominal line of these systems is not identical with the real requirements. Especially the exponential course

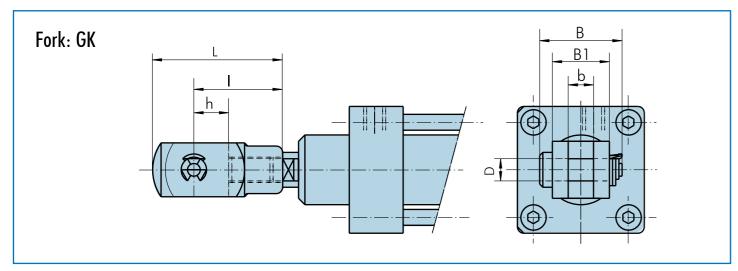
doesn't allow the force enhancement to be controlled.

This special **CyTec** technology enables an increase in power during the punching process. Complicated constructions can be replaced by only one element. The increase of the force can be calculated precisely which is due to an additional working piston to which oil pressure is applied immediately after the locking process. This determines the power stroke.

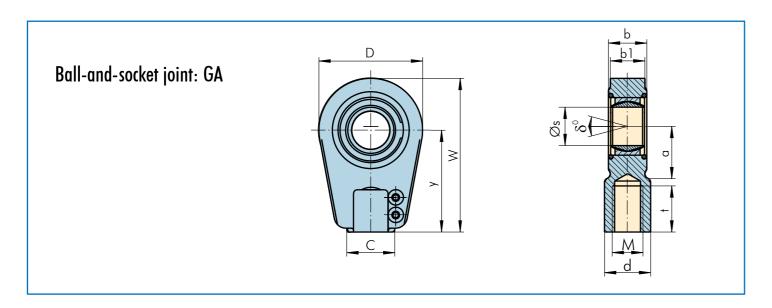
Typical features:

- exact calculation of power stroke during punching, embossing, welding and clamping
- short clock times, low noise
- uniform punching process for film thicknesses up to 2 mm
- long service life of the cutting tools

Piston Ø	A	A1	A2	E	El	E2	С	D1	D2	D3	4 x D4 thread depth	T	TI	T3	LW* +Stroke	LG* +Stroke
50	20	M 16 x 1,5	33	10	129,5	30	4	40	64	45	M 8 x 17	1/4"	118,5	16	230,5	240,5
63	20	M 16 x 1,5	33	9	140,5	29	4	40	74	54,5	M 8 x 17	3/8"	128,5	15	249,5	258,5
80	20	M 16 x 1,5	33	13	145,5	35	5	45	94	69	M 10 x 20	3/8"	131,5	18	262,5	275,5
100	28	M 20 x 1,5	40	15	170,5	33	5	56	114	86	M 10 x 20	1/2"	153,5	17	298,5	313,5
125	28	M 20 x 2	40	20	170,5	55	6	60	140	110	M 12 x 28	1/2"	153,5	27	328,5	348,5
160	36	M 27 x 2	48	22	232	45	4	65	180	140	M 16 x 31	3/4"	214	22	394	416
200	36	M 27 x 2	48	28	232	48	5	75	220	175	M 16 x 31	3/4"	214	24	433	461


^{*}For magnetic piston + 10 mm

Piston Ø	Tolerance-	Clamping force		Stroke force (kN)		Retraction force (kN)			
PISIOII 2 0	way (mm)	(kN)	4 bar	6 bar	10 bar	4 bar	6 bar	10 bar	
50	0,5	31	0,78	1,18	1,96	0,66	0,98	1,64	
63	0,5	31	1,25	1,87	3,12	1,12	1,68	2,80	
80	0,5	31	2,00	3,01	5,02	1,88	2,82	4,71	
100	0,5	78	3,14	4,71	7,85	2,89	4,34	7,24	
125	0,5	78	4,91	7,36	12,27	4,66	6,99	11,65	
160	1	140	8,04	12,05	20,09	7,63	11,45	19,09	
200	1	140	12,56	18,85	31,41	12,16	18,24	30,39	

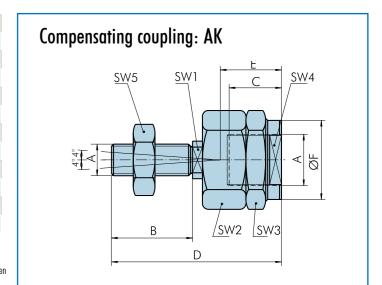

-36-

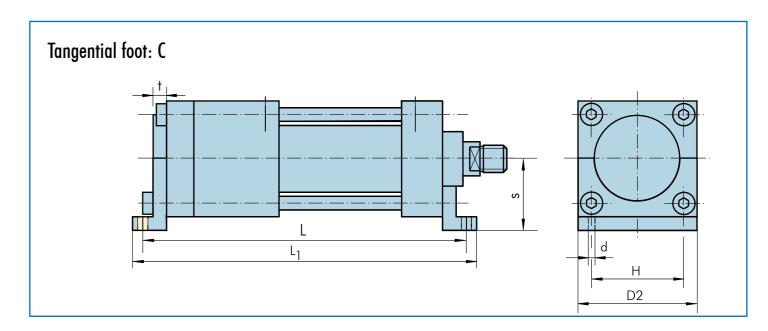
CyLock Series PV, P

Fixtures for pneumatics

Piston Ø	40	50	63	80	100	125	160	200
1	48	64	64	80	80	110	144	144
L	62	83	83	105	105	148	188	188
h	24	32	32	40	40	54	72	72
D _{H11}	12	16	16	20	20	30	35	35
В	32	41,5	41,5	50	50	62	95	95
B1	24	32	32	40	40	55	70	70
b	12	15	16	20	20	30	35	35

Piston Ø	40	50	63	80	100	125	160	200
L	56	72	72	87	87	123,5	145	145
D _{H11}	12	16	16	20	20	30	35	35
D	32	42	42	50	70	80	80	90
b	16	21	21	25	25	37	43	43


-38-

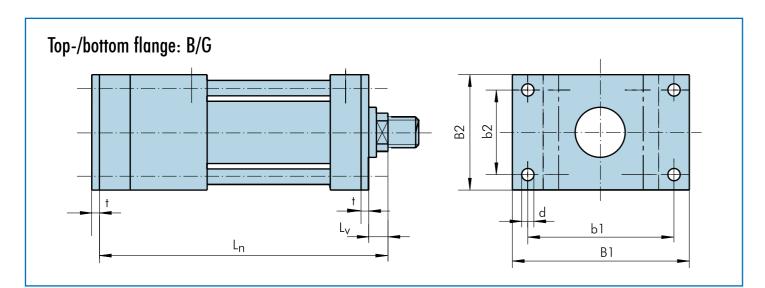

Fixtures for pneumatics

Piston Ø	AK-40	AK-50/63	AK-80/100	AK-125
A	M 12 x 1,25	M 16 x 1,5	M 20 x 1,5	M 27 x 2
В	23	40	39	44
C	23	32	42	48
D	67	112	122	147
E	31	45	56	62
F	21,5	33,5	33,5	40,5
SW 1	12	19	19	24
SW 2	30	41	41	55
SW 3	30	41	41	55
SW 4	19	30	30	32
SW 5	19	30	30	36

AK 160 and AK-200 on request

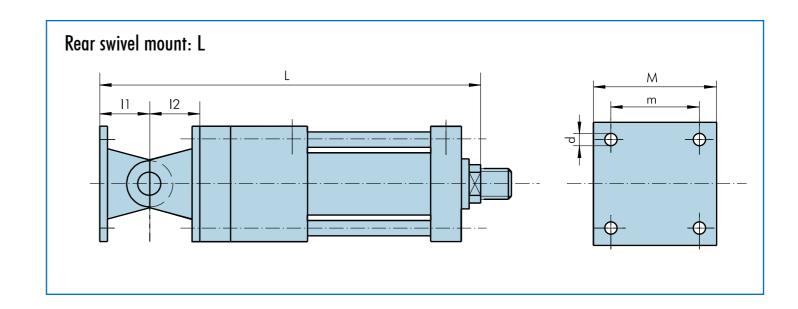
Compensating couplers are mounted onpiston rods to compensate radial and angular deviation, which can occur when the piston is connected to the movable components.

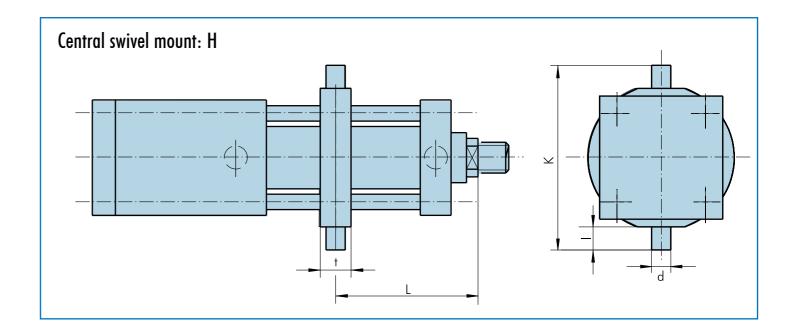
Pisto	n Ø	40	50	63	80	100	125	160	200
D	2	53	65	75	93	113	140	180	220
H	1	36	45	50	63	75	90	115	135
C	ł	9	9	9	12	14	16	18	22
1	t	4	4	5	5	5	9	8	9
9	s	36	45	50	63	71	90	115	135
	01	226	232	257	303	318	340	400	441
L1*= Stroke+	02	246	252	277	328	348	370	430	508
JIIUKG 1	03	281	292	317	373	398	420	504	558
	01	196	210	225	255	270	300	360	381
L*= Stroke+	02	216	230	245	280	300	330	390	448
SHORE I	03	251	270	285	325	350	380	464	498


-39-

Fixtures for pneumatics

Swivel mount: D




-40-

Swivel m	nount: D								
Pisto	n Ø	40	50	63	80	100	125	160	200
I		27	29	34	36	41	50	55	60
11	l	17	17	22	22	26	33	35	37
d _G	67	12	12	16	16	20	25	30	30
t		28	32	40	50	60	70	90	90
W	1	12	12	15	15	20	25	30	30
	01	195	210	230	255	280	325	375	396
L1*= Stroke+	02	215	230	250	280	310	355	375	396
JIIVAG I	03	250	270	290	325	360	405	479	513

Top-/bot	tom flar	Top-/bottom flange: B/G												
Pisto	n Ø	40	50	63	80	100	125	160	200					
b'	1	72	90	100	126	150	180	230	270					
В	1	92	110	128	156	187	224	280	315					
b	2	36	45	50	63	75	90	115	135					
B	B2		65	75	93	113	140	180	220					
d	l	9	9	9	12	14	16	18	22					
t	•	12	14	14	16	16	20	20	25					
Ŀ	V	20	25	25	30	35	45	60	70					
	01	168	181	196	219	239	275	320	336					
L= Stroke+	02	188	201	216	244	269	305	350	403					
SHOKU I	03	223	241	256	289	319	355	424	453					

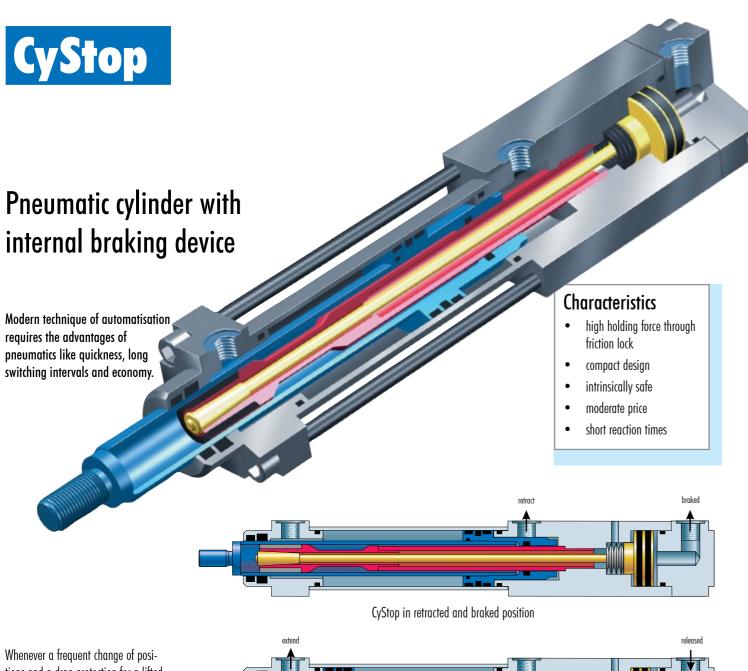
Fixtures for pneumatics

Rear swivel mount: L Piston Ø 40 50 63 80 100 125 160 200 M 53 65 75 93 113 140 180 220 m 37 45 54,5 69 86 110 140 175 d 7 9 9 11 11 14 18 18 I1 27 29 34 36 41 50 55 60 I2 27 29 34 36 41 50 55 60 01 222 239 264 291 321 375 430 456

277 299 324 361 401 455 534 573

259

405


460

523

-41-

Pisto	n Ø	40	50	63	80	100	125	160	200
I	(95	107	130	150	182	210	264	314
	l	16	16	20	20	25	25	32	32
d	h9	16	16	20	20	25	25	32	32
1	t	24	28	28	28	38	50	50	70
	01	120	130	142	160	177	191	240	248
L= Stroke+	02	85	90	102	115	127	141	166	198
JII OKG 1	03	120	130	142	160	177	191	240	248

^{*}These measures don't pply to the series PV/01, PV/02 and PV/03

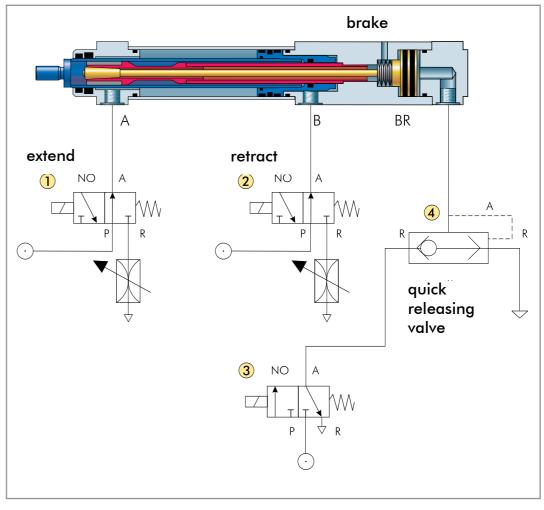
Whenever a frequent change of positions and a drop protection for a lifted load in any position is required the **CyStop** cylinder is the right solution. With it a stroke movement can be interrupted immediately and be locked in place in any required position. Frictional connection automatically takes place with pressure loss in one of the control connections.

Applications of this product are primary seen in safety function like closing or holding elements for doors, flaps and lifting tables. The system is used as well for automatisation and assembling techniques.

The holding system operates by pressure reduction in an auxiliary piston

- the cylinder may also be used as an intrinsically safe element.

Applications are to be found especially in the security area where a movement has to be stopped immediately in case


Function

of pressure failure (e. g. doors, flaps, elevating devices etc.) as well as in the area of machine manufacturing where a fixed position must be holded reliably (e. g. supporting cylinders, manipulators etc.).

The braking system is in the hollow piston rod of the pneumatic cylinder. It is composed of an expanding clamping element that is provided with friction linings on its outside diameter.

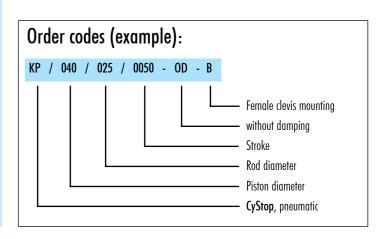
The cylinder functions as any other double-acting cylinder. By pressurising the rear piston chamber, the piston rod moves out, and it retracts if the front chamber is pressurised. This is, how-

ever, only possible if air pressure of at least 5 bar is applied at the control connection of the cylinder, in order to release the brake. Once the control pressure is removed, the brake automatically locks up and the rod cannot be moved any more.

Control suggestion CyStop

Control instructions

To let the cylinder move the braking connection BR becomes pressurised and one of the both sides of the working piston A or B depressurised. If the valve (3) is switched off the chamber of the braking piston becomes depressurised by the guick releasing valve (4), whereupon a spring pack draws a cone into the expanding clamping element. These clamping elements become pressed onto the inner surface of the piston rod and clamp the CyStop with frictional connection. By pressurising the braking piston the cone moves out of the clamping elements and releases the piston rod.


To ensure a soft initial movement of the cylinder the valves always should be controlled by exhausted air. To release the brake a constant pressure of at least 5 bar is necessary.

Positioning

If positioning precision is important, here too the two piston areas should remain under pressure at the state of rest. It must, moreover, be possible to reduce the pressure quickly in the chamber of the control piston. A quick relive valve should always be installed directly on the cylinder.

Application examples:

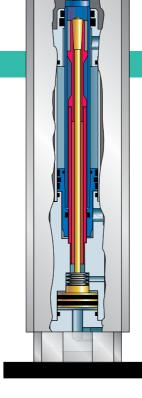
- drop protection for a lifted load in any position
- operating processes in security areas, which must be stopped immediately in case of failure (doors, flaps, etc.)
- holding intermediate positions stationary
- support by means of low moving power but high retaining power
- fastest interruption of a movement
- supply with constructive elements in assembly lines
- stack devices

-43-

Exemplary applications

Practical application: CyStop on presses

The integrated security function makes the CyStop an ideal closing device on protective grilles.


ty function makes
rsing device

The complete systems request
r

Practical application: CyStop on foaming machines

The drop protection facilitates a safe opening of the upper mould half.



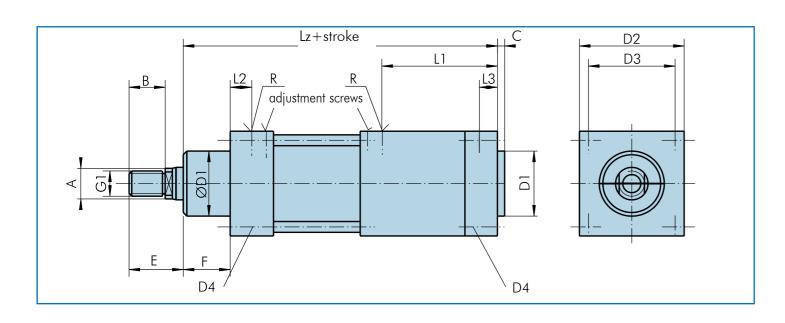
CyStop telescoping lifting element with CyStop braking cylinder

We offer the CyLift lifting column with integrated pneumatic cylinder and coresponding control as a directly applicable system for lifting and lowering of loads (hydraulic or electric operation also available, depending on application). The lifting element can be used universally not only in the classic lifting applications but also in special areas such as medical or laboratory etc. This type uses the advantages of the **CyStop**: quickness, accurate positioning and intrinsic safety. Therefore it shows its extraordinary properties especially in pick-and-place or stack devices particularly in the field of food and drug industry.

CyLift as a stack device on a conveyor.

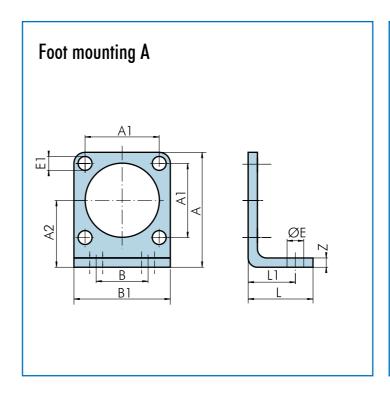
	Overview pneumatic braking cylinder
Series	КР
Design	tie rod version with round cross-section
Piston diameter	40 -300 mm
Stroke	free choice
Pressure	up to 10 bar
Magnetic piston	on request
Distance measure system	optional
Final position damping	on request up from piston diameter 50 mm

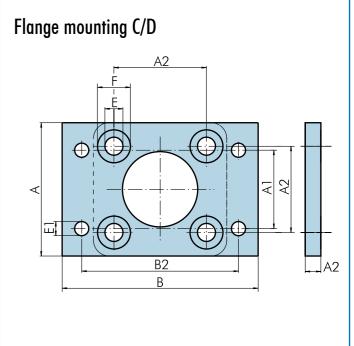
Application examples:


- drop protection for a lifted load in any position
- operating processes in security areas which must be stopped immediately in case of failure (doors, flaps etc.)
- holding intermediate positions stationary
- support by means of low moving power but high retaining power
- fast interruption of a movement
- ideal for building into construction elements in assembly lines
- stack devices

-45-

Pneumatic cylinder with internal braking device


Piston Ø	A	В	С	D _{le8}	D ₂	D_3	E	F	G ₁	D ₄ **	L ₁	L ₂	L ₃	Lz*	R
40	25	24	4	40	54	40	32	20	M 12 x 1,25	M 6 x 10+4	131	13	13	233	1/4"
50	25	32	4	40	64	49	42	25	M 16 x 1,5	M8x10+5	141	13	13	254	1/4"
63	30	32	4	45	74	59	42	25	M 16 x 1,5	M8x10+5	153	20	14	283	3/8"
80	30	40	5	45	94	75	55	33	M 20 x 1,5	M 10 x 11 + 6,5	153	15	17	295	3/8"
100	40	40	5	65	114	90	55	32	M 20 x 1,5	M 10 x 11 + 6,5	167	24	17	332	1/2"
125	40	48	5	65	140	110	68	53	M 27 x 2	M 12 x 17+9	184	20	20	354	1/2"
160	40	72	6	65	180	140	94	58	M 36 x 2	M 16 x 17+9	195	26	20	403	3/4"
200	40	72	6	65	220	175	100	67	M 36 x 2	$M 16 \times 17 + 9$	192	30	20	429	3/4"
250	70	65	6	110	280	220	111	95	M 48 x 5	M 20 x 28+18	209	45	34	488	1"
300	70	65	22	140	315	250	111	144	M 48 x 5	$M 20 \times 28 + 18$	158	23	22	489	1/2"


^{*}For magnetic piston + 10 mm; **Thread x thread depth + depth of the hexagonal head

Piston Ø	Strong Ø	Holding power	Area (mm ²)	Lifting	power	Area (mm ²)	Retraction	power (kN)
PISION &	Stange Ø	ca. (kN)	Area (IIIIII-)	6 bar	10 bar	Area (mm-)	6 bar	10 bar
40	25	0,7	1002	0,6	1,0	766	0,5	0,8
50	25	1,3	1709	1,1	1,7	1473	0,9	1,5
63	30	2,2	2863	1,7	2,9	2410	1,5	2,4
80	30	4,0	4772	2,9	4,8	4320	2,6	4,3
100	40	5,9	7238	4,3	7,2	6597	3,9	6,6
125	40	10,0	11656	7,0	11,7	11015	6,6	11,0
160	40	17,0	19490	11,7	19,5	18849	11,3	18,9
200	40	27,2	30800	18,5	31,0	30160	18,1	30,2
250	70	40,7	46712	28,0	46,7	45239	27,1	45,2
300	70	60,2	68310	41,0	68,3	66838	40,1	66,9

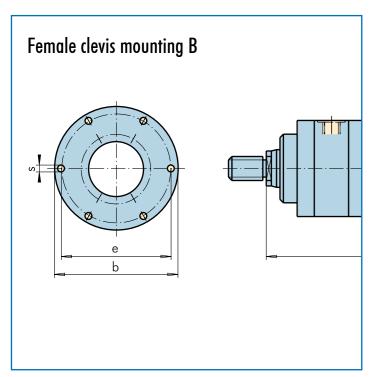
-46-

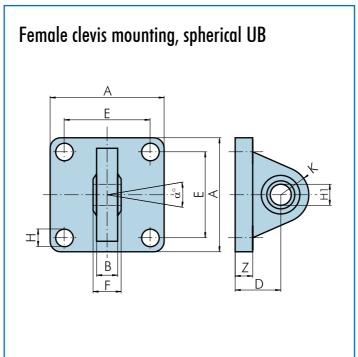
Fixtures

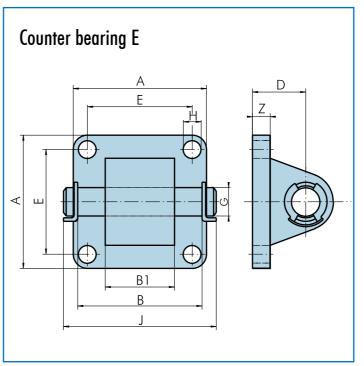
Foot mounting, consisting of two angle brackets: A

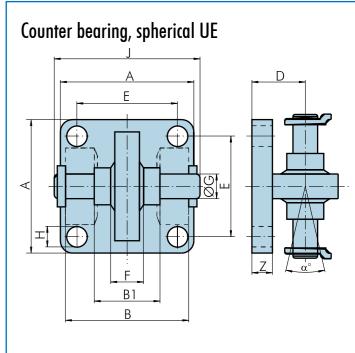
Cylinder Ø	A	A ₁	A ₂	В	B ₁	E	E ₁	L	L ₁	Z
40	62	40	36	36	52	9	7,5	35	22,5	5
50	77,5	49	45	45	65	9	10	45	30	5
63	87,5	59	50	50	75	9	10	45	30	6
80	110,5	75	63	63	95	12	12	55	42,5	7
100	127	90	71	75	112	14	12	55	37,5	7
125	160	110	90	90	140	16	14	68	52,5	8
160	203	140	115	115	176	18	19	80	60	10
200	242,5	175	135	135	215	22	19	90	70	12

Flange mounting, front: C ; flange mounting, rear: D


Cylinder Ø	A	A ₁	A ₂	В	B ₂	E	E ₁	F	Z
40	60	36	40	90	72	7	9	11; 5 mm tief	8
50	75	45	49	115	90	9,5	9	15; 6 mm tief	10
63	85	50	59	125	100	9,5	9	15; 6 mm tief	10
80	105	63	75	150	126	11,5	12	18; 8 mm tief	18
100	120	75	90	180	150	11,5	14	18; 8 mm tief	22
125	145	90	110	210	180	14	16	20; 13 mm tief	28
160	180	115	140	280	230	19	18	26, 18 mm tief	30
200	220	135	175	320	270	19	22	26, 18 mm tief	35


-47-





Fixtures Fixtures

Female clevis mounting B

Cylinder Ø	A	В	B ₁	D	E	Н	H ₁	K	1
40	52	52	28	22,5	40	7,5	12	12	7
50	65	60	32	26	49	10	12	12	10
63	75	70	40	30	59	10	16	16	10
80	95	90	50	37,5	75	12	16	16	12
100	115	110	60	37	90	12	20	20	12
125	140	130	70	57	110	14	25	26	20
160	180	170	90	55	140	19	30	30	20
200	220	170	90	60	175	19	30	30	25

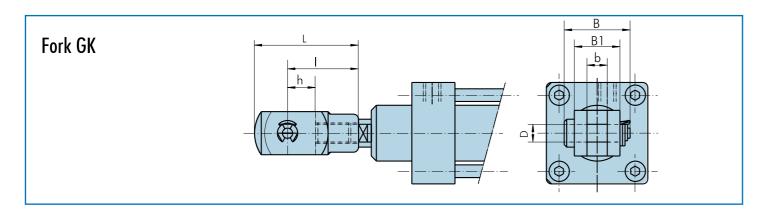
Counter bearing E

Cylinder Ø	A	В	B ₁	D	E	G _{d10}	Н	J	Z
40	52	52	27	22,5	40	12	7,5	63	7
50	65	60	31	26	49	12	10	71	10
63	75	70	39	30	59	16	10	83	10
80	95	90	49	37,5	75	16	12	103	12
100	115	110	59	37	90	20	12	125	12
125	140	130	69	57	110	25	14	147	20
160	180	170	89	55	140	30	19	188	20
200	220	170	89	60	175	30	19	188	25

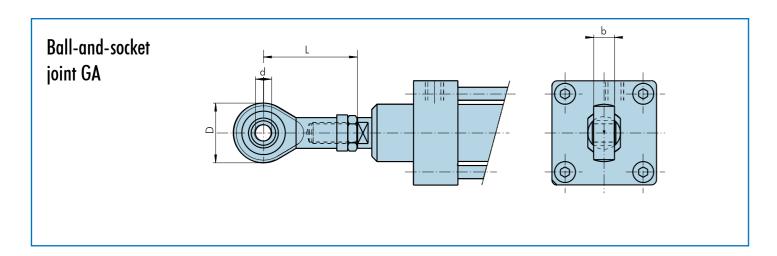
Female clevis mounting with spherical bearing UB

citate clovis modifying with spherical bearing ob										
Cylinder Ø	A	В	D	E	F	Н	H _{1H7}	K	Z	α
40	52	12	22,5	40	16	7,5	12	18	7	26
50	65	12	26	49	16	10	12	18	10	26
63	75	15	30	59	21	10	16	22	10	18
80	95	15	37,5	75	21	12	16	25	12	18
100	115	18	37	90	25	12	20	28	12	24
125	140	22	57	110	31	14	25	35	20	30
160	180	25	55	140	37	19	30	40	20	28
200	220	25	60	175	37	19	30	40	25	28

Counter bearing, spherical UE

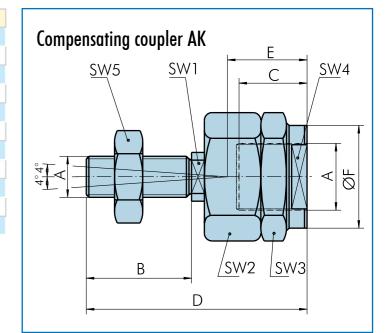

Cylinder Ø	A	В	B ₁	D	E	G_{d10}	Н	J	Z	α
40	52	52	28	22,5	40	12	7,5	63	7	26
50	65	60	32	26	49	12	10	71	10	26
63	75	70	40	30	59	16	10	83	10	18
80	95	90	50	37,5	75	16	12	103	12	18
100	115	110	60	37	90	20	12	125	12	24
125	140	130	70	57	110	25	14	147	20	30
160	180	170	90	55	140	30	19	188	20	28
200	220	170	90	60	175	30	19	188	25	28

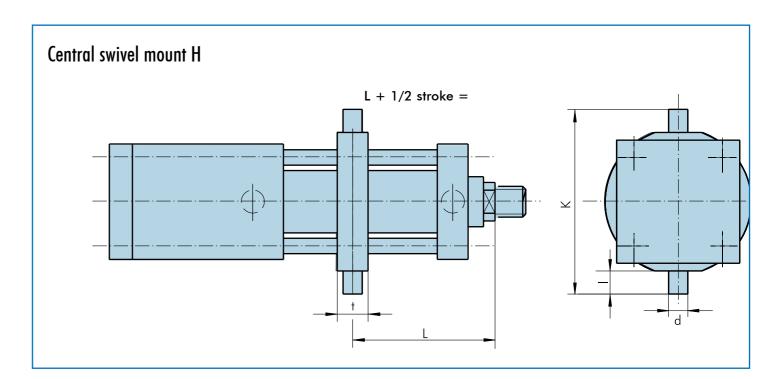
-48-

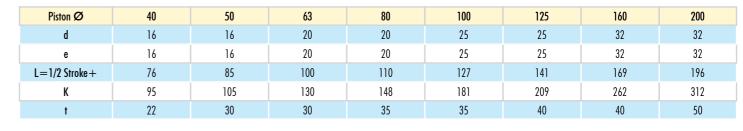


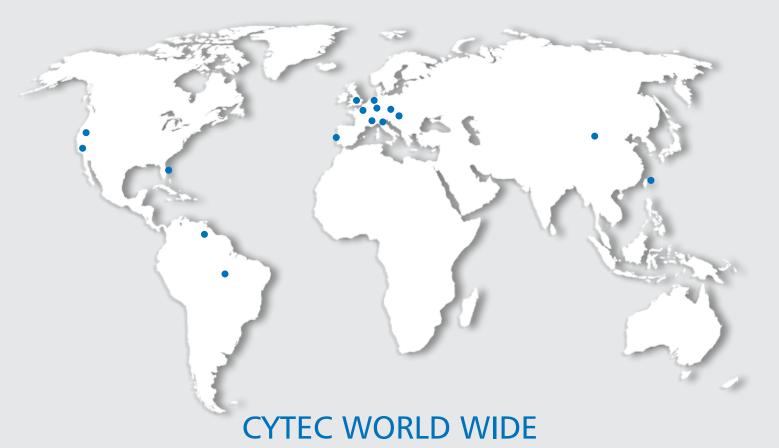
Fixtures

Piston Ø	40	50	63	80	100	125	160	200
С	48	64	64	80	80	110	115	115
F	62	83	83	105	105	140	140	140
D	24	32	32	40	54	40	40	40
N _{h11}	12	16	16	20	20	30	25	25
L	31	39	39	49	49	73	97	97
K	24	32	32	40	40	55	80	80
J	12	16	16	20	20	30	40	40
В	54	72	72	90	90	123,5	133	133


Piston Ø	40	50	63	80	100	125	160	200
В	56	72	72	87	87	123,5	143	143
N _{H7}	12	16	16	20	20	30	35	35
М	30	38	38	46	46	70	80	80
J	12	15	15	18	18	25	28	28
D	16	21	21	25	25	37	43	43
α°	26	30	30	30	30	30	32	32
С	50	64	64	77	77	110	125	125


Fixtures


Piston Ø	AK-40	AK-50/63	AK-80/100	AK-125
A	M 12 x 1,25	M 16 x 1,5	M 20 x 1,5	M 27 x 2
В	23	40	39	44
С	23	32	42	48
D	67	112	122	147
E	31	45	56	62
F	21,5	33,5	33,5	40,5
SW 1	12	19	19	24
SW 2	30	41	41	55
SW 3	30	41	41	55
SW 4	19	30	30	32
SW 5	19	30	30	36


AK 160 and AK-200 on request

Compensating couplers are mounted onpiston rods to compensate radial and angular deviation, which can occur when the piston is connected to the movable components.

Sales & Services, Home Address and Subsidiaries:

Jülich, Germany | Pliezhausen, Germany | Oldham, Great Britain Le Vésinet, France | Leiria, Portugal | Milano, Italy | Liberec, Czech Republic Schwarzenburg, Switzerland | Donaújváros, Hungary | Port Saint Lucie, USA Anaheim, USA | Aragua, Venezuela | Indianópolis, Brazil Shenyang City, China | Taichung City, Taiwan

CYTEC Zylindertechnik GmbH

Steffensrott 1 • D-52428 Jülich

Tel.: (+49) 2461 / 6808-0 • Fax: (+49) 2461 / 6808-758

E-mail: info@CYTEC.de • http:// www.CYTEC.de • www.CYTEC.blog

 $\label{eq:cylock_01 | 02/2022 | english} We reserve the right to make technical modifications. The components/ machines shown here may include options, accessories and control variants.$